Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution
Shuangyu Cai , Keke Lu , Xinnan Li , Lei Wen , Feifei Huang , Ying Jin
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 2053 -2063.
Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution
Duplex stainless steels (DSSs) are suffering from various localized corrosion attacks such as pitting, selective dissolution, crevice corrosion during their service period. It is of great value to quantitatively analyze and grasp the micro-electrochemical corrosion behavior and related mechanism for DSSs on the micrometer or even smaller scales. In this work, scanning Kelvin probe force microscopy (SKPFM) and energy dispersive spectroscopy (EDS) measurements were performed to reveal the difference between the austenite phase and ferrite phase in microregion of DSS 2205. Then traditional electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) tests were employed for micro-electrochemical characterization of DSS 2205 with different proportion phases in ϕ40 and ϕ10 µm micro holes. Both of them can only be utilized for qualitative or semi-quantitative micro-electrochemical characterization of DSS 2205. Coulostatic perturbation method was employed for quantitative micro-electrochemical characterization of DSS 2205. What is more, the applicable conditions of coulostatic perturbation were analyzed in depth by establishing a detailed electrochemical interface circuit. A series of microregion coulostatic perturbations for DSS 2205 with different proportion phases in ϕ10 µm micro holes showed that as the austenite proportion increases, the corresponding polarization resistance of microregion increases linearly.
duplex stainless steel 2205 / quantitative micro-electrochemical study / electrochemical impedance spectroscopy / coulostatic perturbation / scanning Kelvin probe force microscopy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
M. Femenia, J. Pan, and C. Leygraf, Characterization of ferrite-austenite boundary region of duplex stainless steels by SAES, J. Electrochem. Soc., 151(2004), No. 11, art. No. B581. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
S.Y. Cai, L. Wen, X.Q. Yao, F.F. Huang, Z.G. Yu, and Y. Jin, Coulostatic perturbation measurements and the corresponding time-to-frequency transform data analysis for micro-electrochemical study, J. Electrochem. Soc., 168(2021), No. 2, art. No. 021508. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
/
| 〈 |
|
〉 |