Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting
Yaoxiang Geng , Hao Tang , Junhua Xu , Yu Hou , Yuxin Wang , Zhen He , Zhijie Zhang , Hongbo Ju , Lihua Yu
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1770 -1779.
Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting
Many studies have investigated the selective laser melting (SLM) of AlSi10Mg and AlSi7Mg alloys, but there are still lack of researches focused on Al−Si−Mg alloys specifically tailored for SLM. In this work, a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM. The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%. Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg2Si nanoparticles from the α-Al matrix induced by high-intensity intrinsic heat treatment during SLM. The maximum microhardness and compressive yield strength of the alloy reached HV (211 ± 4) and (526 ± 12) MPa, respectively. After aging treatment at 150°C, the maximum microhardness and compressive yield strength of the samples were further improved to HV (221 ± 4) and (577 ± 5) MPa, respectively. These values are higher than those of most known aluminum alloys fabricated by SLM. This paper provides a new idea for optimizing the mechanical properties of Al−Si−Mg alloys fabricated using SLM.
AlSi8Mg3 alloy / selective laser melting / process parameters / microstructure / aging treatment / mechanical properties
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Y.X. Geng, Y.M. Wang, J.H. Xu, S.B. Mi, S.M. Fan, Y.K. Xiao, Y. Wu, and J.H. Luan, A high-strength AlSiMg1.4 alloy fabricated by selective laser melting, J. Alloys Compd., 867(2021), art. No. 159103. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
L. Zhao, J.G.S. Macías, L.P. Ding, H. Idrissi, and A. Simar, Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions, Mater. Sci. Eng. A, 764(2019), art. No. 138210. |
| [24] |
J.L. Lu, X. Lin, H.L. Liao, N. Kang, W.D. Huang, and C. Coddet, Compression behaviour of quasicrystal/Al composite with powder mixture driven layered microstructure prepared by selective laser melting, Opt. Laser Technol., 129(2020), art. No. 106277. |
| [25] |
J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, Z. Tian, J.W. Liang, X.K. Qin, and X.R. Zhang, Densification, microstructure and mechanical properties of an Al−14.1Mg−0.47Si−0.31Sc−0.17Zr alloy printed by selective laser melting, Mater. Sci. Eng. A, 774(2020), art. No. 138931. |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
Y. Zhou, S.F. Wen, C. Wang, L.C. Duan, Q.S. Wei, and Y.S. Shi, Effect of TiC content on the Al−15Si alloy processed by selective laser melting: Microstructure and mechanical properties, Opt. Laser Technol., 120(2019), art. No. 105719. |
| [34] |
|
| [35] |
|
| [36] |
G. Xue, L.D. Ke, H.H. Zhu, H.L. Liao, J.J. Zhu, and X.Y. Zeng, Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties, Mater. Sci. Eng. A, 764(2019), art. No. 138155. |
| [37] |
|
| [38] |
Q.B. Jia, P. Rometsch, S. Cao, K. Zhang, and X.H. Wu, Towards a high strength aluminium alloy development methodology for selective laser melting, Mater. Des., 174(2019), art. No. 107775. |
| [39] |
|
| [40] |
Y.F. Wang, X. Lin, N. Kang, Z.H. Wang, Q.Z. Wang, Y.X. Liu, and W.D. Huang, Laser powder bed fusion of Zr-modified Al−Cu−Mg alloy: Crack-inhibiting, grain refinement, and mechanical properties, Mater. Sci. Eng. A, 838(2022), art. No. 142618. |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
J. Bi, Z.L. Lei, Y.B. Chen, X. Chen, Z. Tian, J.W. Liang, X.R. Zhang, and X.K. Qin, Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting, Mater. Sci. Eng. A, 768(2019), art. No. 138478. |
| [51] |
|
| [52] |
|
| [53] |
Q. Wang, Z. Li, S.J. Pang, X.N. Li, C. Dong, and P.K. Liaw, Coherent precipitation and strengthening in compositionally complex alloys: A review, Entropy, 20(2018), No. 11, art. No. 878. |
/
| 〈 |
|
〉 |