Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries

Dan Wang , Qun Ma , Kang-hui Tian , Chan-Qin Duan , Zhi-yuan Wang , Yan-guo Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1666 -1674.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1666 -1674. DOI: 10.1007/s12613-021-2286-2
Article

Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries

Author information +
History +
PDF

Abstract

Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The alloy exerts excellent cycling durability (the capacity can be maintained at 328.3 mA·h·g−1 after 100 cycles for SIBs and 260 mA·h·g−1 for PIBs) and rate capability (199 mA·h·g−1 at 5 A·g−1 for SIBs and 148 mA·h·g−1 at 5 A·g−1 for PIBs) because of the smooth electron transport path, fast Na/K ion diffusion rate, and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy. This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries, and it also introduces broad application prospects for other electrochemical applications.

Keywords

copper-antimony alloy / anode / porous carbon / potassium-ion batteries / sodium-ion batteries

Cite this article

Download citation ▾
Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, Yan-guo Liu. Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1666-1674 DOI:10.1007/s12613-021-2286-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J.M. Chen, Y. Cheng, Q.B. Zhang, C. Luo, H.Y. Li, Y. Wu, H.H. Zhang, X. Wang, H.D. Liu, X. He, J.J. Han, D.L. Peng, M.L. Liu, and M.S. Wang, Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes, Adv. Funct. Mater., 31(2021), No. 1, art. No. 2007158.

[2]

Chen B, Chao DL, Liu EZ, Jaroniec M, Zhao NQ, Qiao SZ. Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level. Energy Environ. Sci., 2020, 13(4): 1096.

[3]

J.C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1602911.

[4]

He XD, Liu ZH, Liao JY, Ding X, Hu Q, Xiao LN, Wang S, Chen CH. A three-dimensional macroporous anti-mony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A, 2019, 7(16): 9629.

[5]

Zheng J, Yang Y, Fan XL, Ji GB, Ji X, Wang HY, Hou S, Zachariah MR, Wang CS. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci., 2019, 12(2): 615.

[6]

An YL, Tian Y, Ci LJ, Xiong SL, Feng JK, Qian YT. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano, 2018, 12(12): 12932.

[7]

Wang GH, Xiong XH, Lin ZH, Yang CH, Lin Z, Liu ML. Sb/C composite as a high-performance anode for sodium ion batteries. Electrochim. Acta, 2017, 242, 159.

[8]

J. Qin, T.S. Wang, D.Y. Liu, E.Z. Liu, N.Q. Zhao, C.S. Shi, F. He, L.Y. Ma, and C.N. He, A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode, Adv. Mater., 30(2018), No. 9, art. No. 1704670.

[9]

Xiong PX, Wu JX, Zhou MF, Xu YH. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano, 2020, 14(1): 1018.

[10]

Han J, Zhu KJ, Liu P, Si YC, Chai YJ, Jiao LF. N-doped CoSb@C nanofibers as a self-supporting anode for highperformance K-ion and Na-ion batteries. J. Mater. Chem. A, 2019, 7(44): 25268.

[11]

Y.P. Li, Q.B. Zhang, Y.F. Yuan, H.D. Liu, C.H. Yang, Z. Lin, and J. Lu, Surface amorphization of vanadium dioxide (B) for K-ion battery, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000717.

[12]

Ge XF, Liu SH, Qiao M, Du YC, Li YF, Bao JC, Zhou XS. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem. Int. Ed., 2019, 58(41): 14578.

[13]

Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li-and Na-ion batteries. Energy Storage Mater., 2020, 25, 572.

[14]

Liu XW, Gao M, Yang H, Zhong XW, Yu Y. 2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage. Nano Res., 2017, 10(12): 4360.

[15]

Nita C, Fullenwarth J, Monconduit L, Vidal L, Matei Ghimbeu C. Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries. Mater. Today Energy, 2019, 13, 221.

[16]

Yang QQ, Zhou J, Zhang GQ, Guo C, Li M, Zhu YC, Qian YT. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A, 2017, 5(24): 12144.

[17]

Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, X. Liu, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.N. He, C.S. Shi, and N.Q. Zhao, Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries, Chem. Eng. J., 384(2020), art. No. 123327.

[18]

Wang ZY, Dong KZ, Wang D, Luo SH, Liu YG, Wang Q, Zhang YH, Hao AM, Shi CS, Zhao NQ. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J. Mater. Chem. A, 2019, 7(23): 14309.

[19]

Wang ZY, Duan CQ, Wang D, Dong KZ, Luo SH, Liu YG, Wang Q, Zhang YH, Hao AM. BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. J. Colloid Interface Sci., 2020, 580, 429.

[20]

Baggetto L, Allcorn E, Manthiram A, Veith GM. Cu2Sb thin films as anode for Na-ion batteries. Electrochem. Commun., 2013, 27, 168.

[21]

Lv YR, Li YH, Han C, Chen JF, He ZX, Zhu J, Dai L, Meng W, Wang L. Application of porous biomass carbon materials in vanadium redox flow battery. J. Colloid Interface Sci., 2020, 566, 434.

[22]

Wang HL, Yu WH, Mao N, Shi J, Liu W. Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Microporous Mesoporous Mater., 2016, 227, 1.

[23]

Luo SC, Wang TY, Lu HY, Xu XQ, Xue G, Xu N, Wang Y, Zhou DS. Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance. New J. Chem., 2020, 44(27): 11678.

[24]

Wang LB, Wang CC, Zhang N, Li FJ, Cheng FY, Chen J. High anode performance of in situ formed Cu2Sb nano-particles integrated on Cu foil via replacement reaction for sodium-ion batteries. ACS Energy Lett., 2017, 2(1): 256.

[25]

Ye JJ, Xia G, Zheng ZQ, Hu C. Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries. Int. J. Hydrogen Energy, 2020, 45(16): 9969.

[26]

Izquierdo R, Sacher E, Yelon A. X-ray photoelectron spectra of antimony oxides. Appl. Surf. Sci., 1989, 40(1–2): 175.

[27]

Wu L, Hu XH, Qian JF, Pei F, Wu FY, Mao RJ, Ai XP, Yang HX, Cao YL. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci., 2014, 7(1): 323.

[28]

Fan XL, Gao T, Luo C, Wang F, Hu JK, Wang CS. Superior reversible tin phosphide-carbon spheres for sodium ion battery anode. Nano Energy, 2017, 38, 350.

[29]

Liu ZM, Yu XY, Lou XW, Paik U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci., 2016, 9(7): 2314.

[30]

Zhu J, Shang CQ, Wang ZY, Zhang JJ, Liu Y, Gu S, Zhou LJ, Cheng H, Gu YY, Lu ZG. SnS/SnSb@C nanofibers with enhanced cycling stability via vulcanization as an anode for sodium-ion batteries. ChemElectroChem, 2018, 5(7): 1098.

[31]

Jin AH, Kim MJ, Lee KS, Yu SH, Sung YE. Spindlelike Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res., 2019, 12(3): 695.

[32]

Song WP, Kan JL, Wang HL, Zhao XC, Zheng YL, Zhang H, Tao L, Huang MH, Liu W, Shi J. Nitrogen and sulfur co-doped mesoporous carbon for sodium ion batteries. ACS Appl. Nano Mater., 2019, 2(9): 5643.

[33]

Liu Y, Gao ZQ. Synthesis of hierarchically porous nitrogen-doped carbon for sodium-ion batteries. ChemElectroChem, 2017, 4(5): 1059.

[34]

Li DD, Li JZ, Cao JM, Fu XY, Zhou L, Han W. Highly flexible free-standing Sb/Sb2O3@N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability. Sustainable Energy Fuels, 2020, 4(11): 5732.

[35]

Yang WX, Zhou JH, Wang S, Wang ZC, Lv F, Zhang WS, Zhang WY, Sun Q, Guo SJ. A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett., 2020, 5(5): 1653.

[36]

J. Hu, B. Wang, Q.Y. Yu, D. Zhang, Y.H. Zhang, Y. Li, and W.A. Wang, CoSe2/N-doped carbon porous nanoframe as an anode material for potassium-ion storage, Nanotechnology, 31(2020), No. 39, art. No. 395403.

[37]

Gao CL, Wang Q, Luo SH, Wang ZY, Zhang YH, Liu YG, Hao AM, Guo R. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources, 2019, 415, 165.

[38]

T.X. Wang, W.T. Guo, G. Wang, H. Wang, J.T. Bai, and B.B. Wang, Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries, J. Alloys Compd., 834(2020), art. No. 155265.

[39]

Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang, Z.Y. Xing, D. Su, and X.L. Ji, Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries, Adv. Funct. Mater., 27(2017), No. 26, art. No. 1700324.

[40]

Bao S, Luo SH, Yan SX, Wang ZY, Wang Q, Feng J, Wang YL, Yi TF. Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage. Electrochim. Acta, 2019, 307, 293.

[41]

Huang KS, Xing Z, Wang LC, Wu X, Zhao W, Qi XJ, Wang H, Ju ZC. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A, 2018, 6(2): 434.

[42]

Han CH, Han K, Wang XP, Wang CY, Li Q, Meng JS, Xu XM, He Q, Luo W, Wu LM, Mai LQ. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale, 2018, 10(15): 6820.

[43]

S.H. Dong, C.X. Li, Z.Q. Li, L.Y. Zhang, and L.W. Yin, Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries, Small, 14(2018), No. 16, art. No. 1704517.

[44]

Gabaudan V, Berthelot R, Stievano L, Monconduit L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C, 2018, 122(32): 18266.

[45]

Y.Y. Yi, W. Zhao, Z.H. Zeng, C.H. Wei, C. Lu, Y.L. Shao, W.Y. Guo, S.X. Dou, and J.Y. Sun, ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage, Small, 16(2020), No. 7, art. No. 1906566.

[46]

D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, and Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7(2016), art. No. 12122.

[47]

Zhong WW, Huang JD, Liang SQ, Liu J, Li YJ, Cai GM, Jiang Y, Liu J. New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power. ACS Energy Lett., 2020, 5(1): 31.

[48]

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014, 7(5): 1597.

[49]

Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater., 2010, 9(2): 146.

[50]

Li Z, Zhang CZ, Han F, Wang F, Zhang FQ, Shen W, Ye C, Li XK, Liu JS. Towards high-volumetric performance of Na/Li-ion batteries: A better anode material with molybdenum pentachloride-graphite intercalation compounds (MoCl5-GICs). J. Mater. Chem. A, 2020, 8(5): 2430.

[51]

Zhang CZ, Han F, Ma JM, Li Z, Zhang FQ, Xu SH, Liu HB, Li XK, Liu JS, Lu AH. Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage. J. Mater. Chem. A, 2019, 7(19): 11771.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/