Effect of an external magnetic field on improved electroslag remelting cladding process
Zhiwen Hou , Yanwu Dong , Zhouhua Jiang , Zhihao Hu , Limeng Liu , Kunjie Tian
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1511 -1521.
Effect of an external magnetic field on improved electroslag remelting cladding process
Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls. Therefore, this study proposes an improved electroslag remelting cladding (ESRC) process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls. The improved ESRC comprises a conventional ESRC circuit and an external coil circuit. A comprehensive 3D model, including multi-physics fields, is proposed to study the effect of external magnetic fields on the multi-physics fields and interface temperature uniformity. The simulated results demonstrate that the non-uniform Joule heat and flow fields cause a nonuniform interface temperature in the conventional ESRC. As for the improved ESRC, the magnetic flux density ( B coil) along the z-axis is produced by an anticlockwise current of the external coil. The rotating Lorentz force is generated from the interaction between the radial current and axial B coil. Therefore, the slag pool flows clockwise, which enhances circumferential effective thermal conductivity. As a result, the uniformity of the temperature field and interface temperature improve. In addition, the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results, which verifies the accuracy of the improved ESRC model. Therefore, an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality.
improved ESRC / external magnetic field / multi-physics fields / rotating Lorentz force / interface temperature uniformity
| [1] |
|
| [2] |
|
| [3] |
A. Cofiño-Villar, F. Alvarez-Antolin, and J. Asensio-Lozano, Enhancement of the quality of the shell-core bond interface in duplex work rolls manufactured by centrifugal casting used in hot strip mills, Materials, 12(2019), No. 8, art. No. 1304. |
| [4] |
B.I. Medovar, L.B. Medovar, A.V. Chemets, V.B. Shabanov, and O.V. Sviridov, Ukrainian ESS LM HSS rolls for hot strip mills, [in] 42nd Mechanical Working and Steel Processing Conference Proceedings, Toronto, 2000, p. 647. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bonding interface of high speed steel/ductile cast iron composite roll manufactured by an improved electroslag cladding method, Metals, 8(2018), No. 6, art. No. 390. |
| [15] |
|
| [16] |
|
| [17] |
Y. Asai, M. Hori, and N. Tokumitsu, Method of Electroslag Surfacing of Components Having a Cylindrical Surface, US Patent, US04373128A, 1983. |
| [18] |
K. Hideyo, K, Yasuo, and A. Kimihiko, Method and Apparatus for Manufacturing a Composite Steel Ingot, US Patent, US04544019A, 1985. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
ANSYS, Inc 15.0, August 2013. Canonsburg, USA. |
| [33] |
|
| [34] |
|
| [35] |
|
/
| 〈 |
|
〉 |