Effect of an external magnetic field on improved electroslag remelting cladding process

Zhiwen Hou , Yanwu Dong , Zhouhua Jiang , Zhihao Hu , Limeng Liu , Kunjie Tian

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1511 -1521.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1511 -1521. DOI: 10.1007/s12613-021-2277-3
Article

Effect of an external magnetic field on improved electroslag remelting cladding process

Author information +
History +
PDF

Abstract

Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls. Therefore, this study proposes an improved electroslag remelting cladding (ESRC) process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls. The improved ESRC comprises a conventional ESRC circuit and an external coil circuit. A comprehensive 3D model, including multi-physics fields, is proposed to study the effect of external magnetic fields on the multi-physics fields and interface temperature uniformity. The simulated results demonstrate that the non-uniform Joule heat and flow fields cause a nonuniform interface temperature in the conventional ESRC. As for the improved ESRC, the magnetic flux density ( B coil) along the z-axis is produced by an anticlockwise current of the external coil. The rotating Lorentz force is generated from the interaction between the radial current and axial B coil. Therefore, the slag pool flows clockwise, which enhances circumferential effective thermal conductivity. As a result, the uniformity of the temperature field and interface temperature improve. In addition, the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results, which verifies the accuracy of the improved ESRC model. Therefore, an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality.

Keywords

improved ESRC / external magnetic field / multi-physics fields / rotating Lorentz force / interface temperature uniformity

Cite this article

Download citation ▾
Zhiwen Hou, Yanwu Dong, Zhouhua Jiang, Zhihao Hu, Limeng Liu, Kunjie Tian. Effect of an external magnetic field on improved electroslag remelting cladding process. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1511-1521 DOI:10.1007/s12613-021-2277-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fu HG, Xiao Q, Xing J. Manufacture of centrifugal cast high speed steel rolls for wire rod mills. Ironmaking Steelmaking, 2004, 31(5): 389.

[2]

Luan YK, Song NN, Bai YL, Kang XH, Li DZ. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J. Mater. Process. Technol., 2010, 210(3): 536.

[3]

A. Cofiño-Villar, F. Alvarez-Antolin, and J. Asensio-Lozano, Enhancement of the quality of the shell-core bond interface in duplex work rolls manufactured by centrifugal casting used in hot strip mills, Materials, 12(2019), No. 8, art. No. 1304.

[4]

B.I. Medovar, L.B. Medovar, A.V. Chemets, V.B. Shabanov, and O.V. Sviridov, Ukrainian ESS LM HSS rolls for hot strip mills, [in] 42nd Mechanical Working and Steel Processing Conference Proceedings, Toronto, 2000, p. 647.

[5]

Li WM, Geng X, Li HB, Yi GS, Feng H, Jiang ZH. A comprehensive electromagnetic model of electrical slag surfacing with liquid metal process for preparing compound rolls. J. Iron Steel Res. Int., 2012, 19(S2): 921

[6]

Jiang ZH, Cao YL, Dong YW, Hou D, Cao HB, Fan JX. Numerical simulation of the electroslag casting with liquid metal for producing composite roll. Steel Res. Int., 2016, 87(6): 699.

[7]

Sano Y, Hattori T, Haga M. Characteristics of high-carbon high speed steel rolls for hot strip mill. ISIJ Int., 1992, 32(11): 1194.

[8]

Hashimoto M, Otomo S, Yoshida K, Kimura K, Kurahashi R, Kawakami T, Kouga T. Development of high-performance roll by continuous pouring process for cladding. ISIJ Int., 1992, 32(11): 1202.

[9]

Hashimoto M, Tanaka T, Inoue T, Yamashita M, Kurahashi R, Terakado R. Development of cold rolling mill rolls of high speed steel type by using continuous pouring process for cladding. ISIJ Int., 2002, 42(9): 982.

[10]

Tomilenko SV, Kuskov YM. Special features of melting of parent metal in electroslag surfacing in a current-supplying solidification mould. Weld. Int., 2000, 14(11): 893.

[11]

Tomilenko SV, Kuskov YM. Using direct and alternating current with reduced frequency in surfacing in sectional current-supplying solidification moulds. Weld. Int., 2002, 16(7): 572.

[12]

Kuskov YM. Special features of electroslag surfacing with a granulated filler in a current-supplying solidification mould. Weld. Int., 2004, 18(2): 160.

[13]

Cao YL, Jiang ZH, Dong YW, Li GQ, Hou ZW, Wang Q. Research on the bimetallic composite roll produced by a new electroslag cladding method: Microstructure and property of the bonding interface. Ironmaking Steelmaking, 2020, 47(6): 686.

[14]

Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bonding interface of high speed steel/ductile cast iron composite roll manufactured by an improved electroslag cladding method, Metals, 8(2018), No. 6, art. No. 390.

[15]

Cao YL, Jiang ZH, Dong YW, Deng X, Medovar L, Stovpchenko G. Research on the bimetallic composite roll produced by an improved electroslag cladding method: Mathematical simulation of the power supply circuits. ISIJ Int., 2018, 58(6): 1052.

[16]

Shimizu M, Shitamura O, Matsuo S, Kamata T, Kondo Y. Development of high performance new composite roll. ISIJ Int., 1992, 32(11): 1244.

[17]

Y. Asai, M. Hori, and N. Tokumitsu, Method of Electroslag Surfacing of Components Having a Cylindrical Surface, US Patent, US04373128A, 1983.

[18]

K. Hideyo, K, Yasuo, and A. Kimihiko, Method and Apparatus for Manufacturing a Composite Steel Ingot, US Patent, US04544019A, 1985.

[19]

Shi CB. Deoxidation of electroslag remelting (ESR)—A review. ISIJ Int., 2020, 60(6): 1083.

[20]

Shi CB, Huang Y, Zhang JX, Li J, Zheng X. Review on desulfurization in electroslag remelting. Int. J. Miner. Metall. Mater., 2021, 28(1): 18.

[21]

Li SJ, Cheng GG, Miao ZQ, Chen L, Jiang XY. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int. J. Miner. Metall. Mater., 2019, 26(3): 291.

[22]

Wang Q, Lu R, Chen ZY, Li GQ, Yang YX. CFD and experimental investigation of desulfurization of rejected electrolytic manganese metal in electroslag remelting process. Metall. Mater. Trans. B, 2020, 51(2): 649.

[23]

Wang Q, Liu Y, Li GQ, Gao YM, He Z, Li BK. Predicting transfer behavior of oxygen and sulfur in electroslag remelting process. Appl. Therm. Eng., 2018, 129, 378.

[24]

Shi XF, Chang LZ, Wang JJ. Effect of ultrasonic power introduced by a mold copper plate on the solidification process. Int. J. Miner. Metall. Mater., 2017, 24(2): 139.

[25]

Rao L, Wang SJ, Zhao JH, Geng MP, Ding G. Experimental and simulation studies on fabricating GCr15/40Cr bimetallic compound rollers using electroslag surfacing with liquid metal method. J. Iron Steel Res. Int., 2014, 21(9): 869.

[26]

Jiang DB, Zhu MY. Flow and solidification in billet continuous casting machine with dual electromagnetic stirrings of mold and the final solidification. Steel Res. Int., 2015, 86(9): 993.

[27]

Wang H, Zhong YB, Dong LC, Shen Z, Li Q, Li WQ, Zheng TX, Ren WL, Lei ZS, Ren ZM. Coupled 3D numerical model of droplet evolution behaviors during the magnetically controlled electroslag remelting process. JOM, 2018, 70(12): 2917.

[28]

Miyazawa KI, Fukaya T, Asai S, Muchi I, Choudhary M, Szekely J. The effect of an externally imposed magnetic field on the behavior of a laboratory scale ESR system. ISIJ Int., 1985, 25(5): 386.

[29]

Mitchell A, Hernandez-Morales B. Electromagnetic stirring with alternating current during electroslag remelting. Metall. Trans. B, 1990, 21(4): 723.

[30]

Li BK, Wang F, Tsukihashi F. Current, magnetic field and joule heating in electroslag remelting processes. ISIJ Int., 2012, 52(7): 1289.

[31]

Wang XH, Li Y. A comprehensive 3D mathematical model of the electroslag remelting process. Metall. Mater. Trans. B, 2015, 46(4): 1837.

[32]

ANSYS, Inc 15.0, August 2013. Canonsburg, USA.

[33]

Dong YW. Mathematical Modeling of Solidification During Electroslag Remelting Process and Development of New Slags, 2008, Shenyang, Northeastern University, 42 [Dissertation]

[34]

Dong YW, Jiang ZH, Fan JX, Cao YL, Hou D, Cao HB. Comprehensive mathematical model for simulating electroslag remelting. Metall. Mater. Trans. B, 2016, 47(2): 1475.

[35]

Kazumi O. Electro-Slag remelting slag. B. Jpn. Inst. Met., 1979, 18(10): 684.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/