Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy

Hassan Jafari , Amir Houshang Mojiri Tehrani , Mahsa Heydari

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 490 -502.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 490 -502. DOI: 10.1007/s12613-021-2275-5
Article

Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy

Author information +
History +
PDF

Abstract

The effect of extrusion temperature and ratio on the microstructure, hardness, compression, and corrosion behavior of Mg−5Zn−1.5Y alloy were analyzed in this study. The microstructural observations revealed that the cast alloy consists of α-Mg grains, and Mg3Zn6Y and Mg3Zn3Y2 intermetallic compounds, mostly located on the α-Mg grain boundaries. Extruded alloy at higher temperatures showed coarser grain microstructures, whereas those extruded at higher ratios contained finer ones, although more dynamic recrystalized grains with lower intermetallics were measured at both conditions. Combined conditions of the lower temperature (340°C) and higher ratio (1:11.5) provided higher compressive strengths. However, no significant hardness improvement was achieved. The extrusion process could decrease the corrosion rate of the cast alloy in simulated body fluid for over 80% due to primarily the refined microstructure. The extrusion temperature showed a more pronounced effect on corrosion resistance compared to the extrusion ratio, and the higher the extrusion temperature, the higher the corrosion resistance.

Keywords

magnesium alloy / biodegradable / extrusion / microstructure / mechanical properties / corrosion

Cite this article

Download citation ▾
Hassan Jafari, Amir Houshang Mojiri Tehrani, Mahsa Heydari. Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 490-502 DOI:10.1007/s12613-021-2275-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang MQ, Tang TT. Surface treatment strategies to combat implant-related infection from the beginning. J. Orthop. Transl., 2019, 17, 42

[2]

O’Mahony A, Spencer P. Osseointegrated implant failures. J. Ir. Dent. Assoc., 1999, 45(2): 44

[3]

Li HX, Qin SK, Ma YZ, Wang J, Liu YJ, Zhang JS. Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg−Zn−Ca alloys. Int. J. Miner. Metall. Mater., 2018, 25(7): 800.

[4]

Chen JX, Gao M, Tan LL, Yang K. Microstructure, mechanical and biodegradable properties of a Mg−2Zn−1Gd−0.5Zr alloy with different solution treatments. Rare Met., 2019, 38(6): 532.

[5]

Zhang EL, Xu LP, Yu GN, Pan F, Yang K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J. Biomed. Mater. Res. A, 2009, 90(3): 882.

[6]

Bertolini R, Bruschi S, Ghiotti A, Pezzato L, Dabalà M. Large strain extrusion machining of magnesium alloys for biomedical applications. Procedia CIRP, 2018, 71, 105.

[7]

Kim YK, Lee KB, Kim SY, Bode K, Jang YS, Kwon TY, Jeon MH, Lee MH. Gas formation and biological effects of biodegradable magnesium in a preclinical and clinical observation. Sci. Technol. Adv. Mater., 2018, 19(1): 324.

[8]

Chen B, Lin DL, Zeng XQ, Lu C. Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg−Y−Zn alloys. J. Mater. Sci., 2010, 45(9): 2510.

[9]

Zengin H, Turen Y, Ahlatci H, Sun Y. Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg−4Zn−1La magnesium alloy. Rare Met., 2020, 39(8): 909.

[10]

Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. J. Alloys Compd., 2019, 792, 1162.

[11]

Jafari H, Rahimi F, Sheikhsofla Z, Khalilnezhad M. Effect of minor yttrium on microstructure and mechanical properties of bioimplant Mg−5Zn alloy. J. Mater. Eng. Perform., 2017, 26(11): 5590.

[12]

Sun XG, Nouri M, Wang Y, Li DY. Corrosive wear resistance of Mg-Al-Zn alloys with alloyed yttrium. Wear, 2013, 302(1–2): 1624.

[13]

Shi BQ, Chen RS, Ke W. Effects of yttrium and zinc on the texture, microstructure and tensile properties of hot-rolled magnesium plates. Mater. Sci. Eng. A, 2013, 560, 62.

[14]

Xu DK, Tang WN, Liu L, Xu YB, Han EH. Effect of W-phase on the mechanical properties of as-cast Mg−Zn−Y−Zr alloys. J. Alloys Compd., 2008, 461(1–2): 248.

[15]

Nie KB, Zhu ZH, Deng KK, Han JG. Influence of extrusion parameters on microstructure, texture and mechanical properties of a low Mn and high-Ca containing Mg−2.9Zn−1.1Ca−0.5 Mn magnesium alloy. J. Mater. Res. Technol., 2020, 9(3): 5264.

[16]

Ma YZ, Yang CL, Liu YJ, Yuan FS, Liang SS, Li HX, Zhang JS. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg−xZn−0.2Ca alloys. J. Miner. Metall. Mater., 2019, 26(10): 1274.

[17]

Mohammadi FD, Jafari H. Microstructure characterization and effect of extrusion temperature on biodegradation behavior of Mg−5Zn−1Y−xCa alloy. Trans. Nonferrous Met. Soc. China, 2018, 28(11): 2199.

[18]

Li CJ, Sun HF, Fang WB. Effect of extrusion temperatures on microstructures and mechanical properties of Mg−3Zn−0.2Ca−0.5Y alloy. Procedia Eng., 2014, 81, 610.

[19]

Niu HY, Cao FF, Deng KK, Nie KB, Kang JW, Wang HW. Microstructure and corrosion behavior of the as-extruded Mg−4Zn−2Gd−0.5Ca alloy. Acta Metall. Sin. Engl. Lett., 2020, 33(3): 362.

[20]

X.F. Wu, C.X. Xu, J. Kuan, Z.W. Zhang, J.S. Zhang, and W.F. Yang, Effects of hot extrusion temperature on mechanical and corrosion properties of Mg−Y−Zn−Zr biological magnesium alloy containing W phase and I phase, Materials, 13(2020), No. 5, art. No. 1147.

[21]

Shiri M, Jafari H. Effect of extrusion temperature and extrusion ratio on microstructure and biodegradation behavior of Mg−4.5Zn binary alloy. JOM, 2019, 71(12): 4705.

[22]

Zhang XB, Yuan GY, Mao L, Niu JL, Fu PH, Ding WJ. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg−Nd−Zn−Zr alloy. J. Mech. Behav. Biomed. Mater., 2012, 7, 77.

[23]

Tong LB, Zheng MY, Cheng LR, Kamado S, Zhang HJ. Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg−Zn−Ca alloy. Mater. Sci. Eng. A, 2013, 569, 48.

[24]

Zhang XB, Yuan GY, Wang ZZ. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg−Nd−Zn−Zr alloy. Mater. Sci. Technol., 2013, 29(1): 111.

[25]

Lee Y, Lee SI, Yoon J. Effect of the extrusion ratio on the mechanical properties of as-forged Mg−8Al−0.5Zn alloy. Int. J. Precis. Eng. Manuf. Green Technol., 2015, 2(3): 275.

[26]

Jafari H, Rahimi F, Sheikhsofla Z. In vitro corrosion behavior of Mg−5Zn alloy containing low Y contents. Mater. Corros., 2016, 67(4): 396.

[27]

Tahreen N, Chen DL. A critical review of Mg−Zn−Y series alloys containing I, W, and LPSO phases. Adv. Eng. Mater., 2016, 18(12): 1983.

[28]

Wang SY, Gao L, Luo AA, Li DJ, Zeng XQ. Hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy. Trans. Nonferrous Met. Soc. China, 2015, 25(6): 1822.

[29]

Kim SH, Lee SW, Moon BG, Kim HS, Kim YM, Park SH. Influence of extrusion temperature on dynamic deformation behaviors and mechanical properties of Mg−8Al−0.5Zn−0.2Mn−0.3Ca−0.2Y alloy. J. Mater. Res. Technol., 2019, 8(6): 5254.

[30]

Niu YX, Song ZT, Le QC, Hou J, Ning FK. Excellent mechanical properties obtained by low temperature extrusion based on Mg−2Zn−1Al alloy. J. Alloys Compd., 2019, 801, 415.

[31]

Liu X, Zhang ZQ, Hu WY, Le QC, Bao L, Cui JZ. Effects of extrusion speed on the microstructure and mechanical properties of Mg−9Gd−3Y−1.5Zn−0.8Zr alloy. J. Mater. Sci. Technol., 2016, 32(4): 313.

[32]

Wang JF, Wu ZS, Gao S, Lu RP, Qin DZ, Yang WX, Pan FS. Optimization of mechanical and damping properties of Mg−0.6Zr alloy by different extrusion processing. J. Magnesium Alloys, 2015, 3(1): 79.

[33]

J.C. Sun, Y.L. Ma, H.W. Miao, K.J. Li, C.H. Li, and H. Huang, Effect of Ca concentration on microstructure and mechanical properties of as-cast and as-extruded quasicrystal-strengthened Mg−7.2Zn−2.4Gd alloy, Adv. Mater. Sci. Eng., 2018(2018), art. No. 9138753.

[34]

X. Zhao, S.C. Li, Y. Xue, and Z.M. Zhang, An investigation on microstructure, texture and mechanical properties of AZ80 Mg alloy processed by annular channel angular extrusion, Materials, 12(2019), No. 6, art. No. 1001.

[35]

Z.J. Yu, C. Xu, J. Meng, K. Liu, J.L. Fu, and S. Kamado, Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg−Gd−Y−(Nd/Zn)−Zr alloys, Mater. Sci. Eng. A, 762(2019), art. No. 138080.

[36]

H. Ma, Z.H. Huang, Y. Yao, H. Zhang, Z.M. Zhang, C.J. Xu, Y.H. Kang, S.C. Wang, M. Kuang, and J.C. Huang, Evolution of microstructures and mechanical properties of Mg−1.4Gd−1.2Y−0.4Zn−0.5Al sheets with different extrusion ratios, J. Alloys Compd., 817(2020), art. No. 152769.

[37]

Sun HF, Li CJ, Fang WB. Evolution of microstructure and mechanical properties of Mg−3.0Zn−0.2Ca−0.5Y alloy by extrusion at various temperatures. J. Mater. Process. Technol., 2016, 229, 633.

[38]

Zeng ZR, Stanford N, Davies CHJ, Nie JF, Birbilis N. Magnesium extrusion alloys: A review of developments and prospects. Int. Mater. Rev., 2019, 64(1): 27.

[39]

Zhang Z, Zhang JH, Wang J, Li ZH, Xie JS, Liu SJ, Guan K, Wu RZ. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[40]

Sheng K, Lu LW, Xiang Y, Ma M, Wang ZC. Microstructure and mechanical properties of AZ31 Mg alloy fabricated by pre-compression and frustum shearing extrusion. Acta Metall. Sinica Engl. Lett., 2019, 32(2): 235.

[41]

Yang JY, Kim WJ. Effect of I(Mg3YZn6)-, W(Mg3Y2Zn3)-and LPSO(Mg12ZnY)-phases on tensile work-hardening and fracture behaviors of rolled Mg−Y−Zn alloys. J. Mater. Res. Technol., 2019, 8(2): 2316.

[42]

Hidalgo-Manrique P, Robson JD, Pérez-Prado MT. Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Mater., 2017, 124, 456.

[43]

G. Lou, S.M. Xu, X.Y. Teng, Z.J. Ye, P. Jia, H. Wu, J.F. Leng, and M. Zuo, Effects of extrusion on mechanical and corrosion resistance properties of biomedical Mg−Zn−Nd−xCa alloys, Materials, 12(2019), No. 7, art. No. 1049.

[44]

Du YZ, Ge YF, Jiang BL. Dynamic precipitation behavior of a Mg−Zn−Ca−La alloy during deformation. JOM, 2019, 71(7): 2202.

[45]

Zhang YJ, Yan CW, Wang FH, Li WF. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corros. Sci., 2005, 47(11): 2816.

[46]

Jordon JB, Miller V, Joshi VV, Neelameggham NR. Magnesium Technology 2020, 2020, Cham, Springer

[47]

J.G. Li, Y. Yang, H.J. Deng, M.M. Li, J.F. Su, F.P. Hu, X.M. Xiong, and X.D. Peng, Microstructure and corrosion behavior of as-extruded Mg−6.5Li−xY−yZn alloys, J. Alloys Compd., 823(2020), art. No. 153839.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/