Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle

Jun Yang , Yuan-hua Lin , Bing-shu Guo , Ming-shan Wang , Jun-chen Chen , Zhi-yuan Ma , Yun Huang , Xing Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1621 -1628.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1621 -1628. DOI: 10.1007/s12613-021-2270-x
Article

Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle

Author information +
History +
PDF

Abstract

The silicon-based material exhibits a high theoretical specific capacity and is one of the best anode for the next generation of advanced lithium-ion batteries (LIBs). However, it is difficult for the silicon-based anode to form a stable solid-state interphase (SEI) during Li alloy/de-alloy process due to the large volume change (up to 300%) between silicon and Li4.4Si, which seriously limits the cycle life of the LIBs. Herein, we use strontium fluoride (SrF2) particle to coat the silicon-carbon (Si/C) electrode (SrF2@Si/C) to help forming a stable and high mechanical strength SEI by spontaneously embedding the SrF2 particle into SEI. Meanwhile the formed SEI can inhibit the volume expansion of the silicon-carbon anode during the cycle. The electrochemical test results show that the cycle performance and the ionic conductivity of the SrF2@Si/C anode has been significantly improved. The X-ray photoelectron spectroscopy (XPS) analysis reveals that there are fewer electrolyte decomposition products formed on the surface of the SrF2@Si/C anode. This study provides a facile approach to overcome the problems of Si/C electrode during the electrochemical cycling, which will be beneficial to the industrial application of silicon-based anode materials.

Keywords

silicon-based anode / volume expansion / strontium fluoride / solid electrolyte interface / cycling stability

Cite this article

Download citation ▾
Jun Yang, Yuan-hua Lin, Bing-shu Guo, Ming-shan Wang, Jun-chen Chen, Zhi-yuan Ma, Yun Huang, Xing Li. Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1621-1628 DOI:10.1007/s12613-021-2270-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc., 2013, 135(4): 1167.

[2]

Wang LF, Geng MM, Ding XN, Fang C, Zhang Y, Shi SS, Zheng Y, Yang K, Zhan C, Wang XD. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538-552.

[3]

Winter M, Barnett B, Xu K. Before Li ion batteries. Chem. Rev., 2018, 118(23): 11433.

[4]

Jin Y, Zhu B, Lu ZD, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater., 2017, 7(23): 1700715.

[5]

Iqbal A, Chen L, Chen Y, Gao Y X, Chen F, Li DC. Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode. Int. J. Miner. Metall. Mater., 2018, 25(12): 1473.

[6]

Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5): 414.

[7]

Cui LF, Ruffo R, Chan CK, Peng HL, Cui Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett., 2009, 9(1): 491.

[8]

Wang W, Wang YW, Gu L, Lu R, Qian HL, Peng XS, Sha J. SiC@Si core-shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries. J. Power Sources, 2015, 293, 492.

[9]

Hu YW, Liu XS, Zhang XP, Wan N, Pan D, Li XJ, Bai Y, Zhang WF. Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. Electrochim. Acta, 2016, 190, 33.

[10]

Kasavajjula U, Wang CS, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources, 2007, 163(2): 1003.

[11]

Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater., 2010, 9(4): 353.

[12]

Li X, Bai YS, Wang MS, Wang GL, Ma Y, Li L, Xiao BS, Zheng JM. Self-assembly encapsulation of Si in N-doped reduced graphene oxide for use as a lithium ion battery anode with significantly enhanced electrochemical performance. Sustainable Energy Fuels, 2019, 3(6): 1427.

[13]

Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Silicon nanotube battery anodes. Nano Lett., 2009, 9(11): 3844.

[14]

Zhang Y, Hu K, Zhou YL, Xia YB, Yu NF, Wu GL, Zhu YS, Wu YP, Huang HB. A facile, one-step synthesis of silicon/silicon carbide/carbon nanotube nanocomposite as a cycling-stable anode for lithium ion batteries. Nanomaterials, 2019, 9(11): 1624.

[15]

Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008, 3(1): 31.

[16]

Peng KQ, Jie JS, Zhang WJ, Lee ST. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett., 2008, 93(3): 033105.

[17]

Mi HW, Li F, Xu SX, Li ZA, Chai XY, He CX, Li YL, Liu JH. A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries. Nanoscale Res. Lett., 2016, 11(1): 204.

[18]

Wang B, Li XL, Luo B, Jia YY, Zhi LJ. One-dimensional/two-dimensional hybridization for self-supported binderfree silicon-based lithium ion battery anodes. Nanoscale, 2013, 5(4): 1470.

[19]

Wang MS, Song WL, Fan LZ. Three-dimensional interconnected network of graphene-wrapped silicon/carbon nanofiber hybrids for binder-free anodes in lithium-ion batteries. ChemElectroChem, 2015, 2(11): 1699.

[20]

Jia HP, Zou LF, Gao PY, Cao X, Zhao WG, He Y, Engelhard MH, Burton SD, Wang H, Ren XD, Li QY, Yi R, Zhang X, Wang CM, Xu ZJ, Li XL, Zhang JG, Xu W. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater., 2019, 9(31): 1900784.

[21]

Chattopadhyay S, Lipson AL, Karmel HJ, Emery JD, Fister TT, Fenter PA, Hersam MC, Bedzyk MJ. In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem. Mater., 2012, 24(15): 3038.

[22]

Lu YY, Tu ZY, Archer LA. Stable lithium electrode-position in liquid and nanoporous solid electrolytes. Nat. Mater., 2014, 13(10): 961.

[23]

H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J. G. Zhang, and W. Xu, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater.., 9(2019), art. No.1900784.

[24]

Liu SF, Ji X, Yue J, Hou S, Wang PF, Cui CY, Chen J, Shao BW, Li JR, Han FD, Tu JP, Wang CS. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc., 2020, 142(5): 2438.

[25]

Li X, Liu Y, Pan Y, Wang MS, Chen JC, Xu H, Huang Y, Lau WM, Shan AX, Zheng JM, Mitlin D. A functional SrF2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode. J. Mater. Chem. A, 2019, 7(37): 21349.

[26]

Nguyen CC, Yoon T, Seo DM, Guduru P, Lucht BL. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces, 2016, 8(19): 12211.

[27]

Li X, Zhang KJ, Mitlin D, Paek E, Wang MS, Jiang F, Huang Y, Yang ZZ, Gong Y, Gu L, Zhao WG, Du YG, Zheng JM. Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) cathodes: Atomic scale insight on the mechanisms of cycling decay and of the improvement due to cobalt phosphate surface modification. Small, 2018, 14(40): 1802570.

[28]

Li X, Zhang KJ, Mitlin D, Yang ZZ, Wang MS, Tang Y, Jiang F, Du YG, Zheng JM. Fundamental insight into Zr modification of Li- and Mn-rich cathodes: Combined transmission electron microscopy and electrochemical impedance spectroscopy study. Chem. Mater., 2018, 30(8): 2566.

[29]

Li X, Bai YS, Wang MS, Wang GL, Ma Y, Huang Y, Zheng JM. Dual carbonaceous materials synergetic protection silicon as a high-performance free-standing anode for lithiumion battery. Nanomater., 2019, 9(4): 650.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/