A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries

Ying-jun Qiao , Huan Zhang , Yu-xin Hu , Wan-peng Li , Wen-jing Liu , Hui-ming Shang , Mei-zhen Qu , Gong-chang Peng , Zheng-wei Xie

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1611 -1620.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1611 -1620. DOI: 10.1007/s12613-021-2266-6
Article

A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries

Author information +
History +
PDF

Abstract

Silicon anodes are considered to have great prospects for use in batteries; however, many of their defects still need to be improved. The preparation of hybrid materials based on porous carbon is one of the effective ways to alleviate the adverse impact resulting from the volume change and the inferior electronic conductivity of a silicon electrode. Herein, a chain-like carbon cluster structure is prepared, in which MOF-derived porous carbon acts as a shell structure to integrally encapsulate Si nanoparticles, and CNTs play a role in connecting carbon shells. Based on the exclusive structure, the carbon shell can accommodate the volume expansion more effectively, and CNTs can improve the overall stability and conductivity. The resulting composite reveals excellent rate capacity and enhanced cycling stability; in particular, a capacity of 732 mA·h·g−1 at 2 A·g−1 is achieved with a reservation rate of 72.3% after cycling 100 times at 1 A·g−1.

Keywords

silicon / carbon nanotubes / metal-organic framework / Li-ion batteries

Cite this article

Download citation ▾
Ying-jun Qiao, Huan Zhang, Yu-xin Hu, Wan-peng Li, Wen-jing Liu, Hui-ming Shang, Mei-zhen Qu, Gong-chang Peng, Zheng-wei Xie. A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1611-1620 DOI:10.1007/s12613-021-2266-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeena MT, Bok T, Kim SH, Park S, Kim JY, Park S, Ryu JH. A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. Nanoscale, 2016, 8(17): 9245.

[2]

Chen QH, Cheng Y, Liu HD, Zhang QB, Petrova V, Chen HX, Liu P, Peng DL, Liu ML, Wang MS. Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage. ACS Appl. Mater. Interfaces, 2020, 12(32): 36247.

[3]

Zhao LZ, Wu HH, Yang CH, Zhang QB, Zhong GM, Zheng ZM, Chen HX, Wang JM, He K, Wang BL, Zhu T, Zeng XC, Liu ML, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano, 2018, 12(12): 12597.

[4]

Q.B. Zhang, Z.L. Gong, and Y. Yang, Advance in interface and characterizations of sulfide solid electrolyte materials, Acta Phys. Sin., 69(2020), No. 22, art. No. 228803.

[5]

Hayner CM, Zhao X, Kung HH. Materials for rechargeable lithium-ion batteries. Annu. Rev. Chem. Biomol. Eng., 2012, 3(1): 445.

[6]

Choi JW, Aurbach D. Promise and reality of post-lithiumion batteries with high energy densities. Nat. Rev. Mater., 2016, 1(4): 1.

[7]

Zheng ZM, Wu HH, Liu HD, Zhang QB, He X, Yu SC, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu ML, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano, 2020, 14(8): 9545.

[8]

Jiang Y, Song DY, Wu J, Wang ZX, Huang SS, Xu Y, Chen ZW, Zhao B, Zhang JJ. Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano, 2019, 13(8): 9100.

[9]

Zheng ZM, Li P, Huang J, Liu HD, Zao Y, Hu ZL, Zhang L, Chen HX, Wang MS, Peng DL, Zhang QB. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J. Energy Chem., 2020, 41, 126.

[10]

Chen ZW, Fei SM, Wu CH, Xin PJ, Huang SS, Selegård L, Uvdal K, Hu ZJ. Integrated design of hierarchical CoSnO3@NC@MnO@NC nanobox as anode material for enhanced lithium storage performance. ACS Appl. Mater. Interfaces, 2020, 12(17): 19768.

[11]

Jiang Y, Wan YY, Jiang W, Tao HH, Li WR, Huang SS, Chen ZW, Zhao B. Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles. Chem. Eng. J., 2019, 367, 45.

[12]

Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem. Rev., 2014, 114(23): 11444.

[13]

Guo LF, Zhang SY, Xie J, Zhen D, Jin Y, Wan KY, Zhuang DG, Zheng WQ, Zhao XB. Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries. Int. J. Miner. Metall. Mater., 2020, 27(4): 515.

[14]

Zhang QB, Chen HX, Luo LL, Zhao BT, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ. Sci., 2018, 11(3): 669.

[15]

Li JY, Xu Q, Li G, Yin YX, Wan LJ, Guo YG. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Mater. Chem. Front., 2017, 1(9): 1691.

[16]

Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater., 2010, 9(4): 353.

[17]

Iqbal A, Chen L, Chen Y, Gao YX, Chen F, Li DC. Lithium-ion full cell with high energy density using nickel-rich LiNiCoMnO2 cathode and SiO-C composite anode. Int. J. Miner. Metall. Mater., 2018, 25(12): 1473.

[18]

W.L. An, B. Gao, S.X. Mei, B. Xiang, J.J. Fu, L. Wang, Q.B. Zhang, P.K. Chu, and K.F. Huo, Scalable synthesis of ant-nestlike bulk porous silicon for high-performance lithium-ion battery anodes, Nat. Commun., 10(2019), No. 1, art. No. 1447.

[19]

Y. Jiang, J.L. Jiang, Z.X. Wang, M.R. Han, X.Y. Liu, J. Yi, B. Zhao, X.L. Sun, and J.J. Zhang, Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries, Nano Energy, 70(2020), art. No. 104504.

[20]

Xu Q, Sun JK, Li JY, Yin YX, Guo YG. Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Mater., 2018, 12, 54.

[21]

Shen XH, Tian ZY, Fan RJ, Shao L, Zhang DP, Cao GL, Kou L, Bai YZ. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem., 2018, 27(4): 1067.

[22]

Zhou XS, Wan LJ, Guo YG. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small, 2013, 9(16): 2684.

[23]

Zhu JH, Yang J, Xu ZX, Wang JL, Nuli YN, Zhuang XD, Feng XL. Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale, 2017, 9(25): 8871.

[24]

Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res., 2016, 49(12): 2796.

[25]

Xu GY, Nie P, Dou H, Ding B, Li LY, Zhang XG. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today, 2017, 20(4): 191.

[26]

X.K. Song, S. Chen, L.L. Guo, Y. Sun, X.P. Li, X. Cao, Z.X. Wang, J.H. Sun, C. Lin, and Y. Wang, General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications, Adv. Energy Mater., 8(2018), No. 27, art. No. 1801101.

[27]

Liu NT, Liu J, Jia DZ, Huang YD, Luo J, Mamat X, Yu Y, Dong YM, Hu GZ. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Mater., 2019, 18, 165.

[28]

Han YZ, Qi PF, Feng X, Li SW, Fu XT, Li HW, Chen YF, Zhou JW, Li XG, Wang B. In situ growth of MOFs on the surface of Si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(4): 2178.

[29]

R.S. Gao, J. Tang, X.L. Yu, S. Tang, K. Ozawa, T. Sasaki, and L.C. Qin, In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage, Nano Energy, 70(2020), art. No. 104444.

[30]

Jin D, Yang XF, Ou YQ, Rao MM, Zhong YT, Zhou GM, Ye DQ, Qiu YC, Wu YP, Li WS. Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage. Sci. Bull., 2020, 65(6): 452.

[31]

Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 10(6): 3739.

[32]

Feng XF, Liu K, Xie X, Zhou RF, Zhang LN, Li QQ, Fan SS, Jiang KL. Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them. J. Phys. Chem. C, 2009, 113(22): 9623.

[33]

Kim SY, Lee J, Kim BH, Kim YJ, Yang KS, Park MS. Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces, 2016, 8(19): 12109.

[34]

Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem. Int. Ed, 2016, 55(12): 4087.

[35]

Su LW, Zhou Z, Ren MM. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem. Commun., 2010, 46(15): 2590.

[36]

Iqbal N, Wang XF, Yu JY, Jabeen N, Ullah H, Ding B. In situ synthesis of carbon nanotube doped metal-organic frameworks for CO2 capture. RSC Adv., 2016, 6(6): 4382.

[37]

Bu FX, Chen WS, Gu JJ, Agboola PO, Al-Khalli NF, Shakir I, Xu YX. Microwave-assisted CVD-like synthesis of dispersed monolayer/few-layer N-doped graphene encapsulated metal nanocrystals for efficient electrocatalytic oxygen evolution. Chem. Sci., 2018, 9(34): 7009.

[38]

H. Shang, Z.C. Zuo, L. Yu, F. Wang, F. He, and Y.L. Li, Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries, Adv. Mater., 30(2018), No. 27, art. No. 1801459.

[39]

Mu TS, Zuo PJ, Lou SF, Pan QR, Zhang H, Du CY, Gao YZ, Cheng XQ, Ma YL, Huo H, Yin GP. A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode material for lithium ion batteries. J. Alloys Compd., 2019, 777, 190.

[40]

Miao WF, Zhao XY, Wang R, Liu YQ, Li L, Zhang ZS, Zhang WM. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: A promising anode for potassium ion battery. J. Colloid Interface Sci., 2019, 556, 432.

[41]

Wu HL, Li Y, Ren J, Rao DW, Zheng QJ, Zhou L, Lin DM. CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy, 2019, 55, 82.

[42]

W. Weng, H.J. Lin, X.L. Chen, J. Ren, Z.T. Zhang, L.B. Qiu, G.Z. Guan, and H.S. Peng, Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes, J. Mater. Chem. A, 2(2014), No. 24, art. No. 9306.

[43]

X. Men, T. Wang, B.H. Xu, Z. Kong, X.H. Liu, A.P. Fu, Y.H. Li, P.Z. Guo, Y.G. Guo, H.L. Li, and X.S. Zhao, Hierarchically structured microspheres consisting of carbon coated silicon nanocomposites with controlled porosity as superior anode material for lithium-ion batteries, Electrochim. Acta, 324(2019), art. No. 134850.

[44]

Zhou XS, Cao AM, Wan LJ, Guo YG. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res., 2012, 5(12): 845.

[45]

T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645.

[46]

Jiang Y, Wang ZX, Xu CX, Li WX, Li Y, Huang SS, Chen ZW, Zhao B, Sun XL, Wilkinson DP, Zhang JJ. Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. Energy Storage Mater., 2020, 28, 17.

[47]

Feng L, Han X, Su XR, Pang BC, Luo YL, Hu F, Zhou MJ, Tao K, Xia YY. Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries. J. Alloys Compd., 2018, 765, 512.

[48]

Majeed MK, Ma GY, Cao YX, Mao HZ, Ma XJ, Ma WZ. Metal-organic frameworks-derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium-ion batteries. Chem., 2019, 25(51): 11991.

[49]

Zhu X, Choi SH, Tao R, Jia XL, Lu YF. Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite. J. Alloys Compd., 2019, 791, 1105.

[50]

Zhang H, Zong P, Chen M, Jin H, Bai Y, Li SW, Ma F, Xu H, Lian K. In situ synthesis of multilayer carbon matrix decorated with copper particles: Enhancing the performance of Si as anode for Li-ion batteries. ACS Nano, 2019, 13(3): 3054.

[51]

J.B. Li, W.J. Liu, Q. Wan, F.M. Liu, X. Li, Y.J. Qiao, M.Z. Qu, and G.C. Peng, Facile spray-drying synthesis of dual-shell structure Si@SiOx@graphite/graphene as stable anode for Li-ion batteries, Energy Technol., 7(2019), No. 9, art. No. 1900464.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/