Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction

Pengqi Chen , Yunxiao Tai , Huan Wu , Yufei Gao , Jiayu Chen , Jigui Cheng

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1627 -1634.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1627 -1634. DOI: 10.1007/s12613-021-2265-7
Article

Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction

Author information +
History +
PDF

Abstract

Nanosized tungsten carbide (WC)/carbon (C) catalyst was synthesized via a novel ultra-rapid confinement combustion synthesis method. The amount of activated carbon (AC) plays an important role in the morphology and structure, controlling both the precursor and final powder. The WC particles synthesized inside the pores of the AC had been 10–20 nm because of the confinement of the pore structure and the large specific surface area of AC. When used for oxygen reduction performance, the half-wave potential was −0.24 V, and the electron transfer number was 3.45, indicating the main reaction process was the transfer of four electrons. The detailed electrocatalytic performance and underlying mechanism were investigated in this work. Our study provides a novel approach for the design of catalysts with new compositions and new structures, which are significant for promoting the commercialization of fuel cells.

Keywords

confinement / combustion synthesis / tungsten carbide / activated carbon / electrochemical catalysis / oxygen reduction reaction

Cite this article

Download citation ▾
Pengqi Chen, Yunxiao Tai, Huan Wu, Yufei Gao, Jiayu Chen, Jigui Cheng. Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1627-1634 DOI:10.1007/s12613-021-2265-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li ZS, Liu ZS, Li BL, Liu ZH, Li DH, Wang HQ, Li QY. Hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum nanocomposite as an efficient electrocatalyst for the oxygen reduction reaction. Electrochimi. Acta, 2016, 221, 31.

[2]

Chen Z, Qin ML, Chen PQ, Jia BR, He Q, Qu XH. Tungsten carbide/carbon composite synthesized by combustion-carbothermal reduction method as electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2016, 41(30): 13005.

[3]

Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science, 2016, 352(6288): 974.

[4]

Wang YN, Zhang LP, Meng XX, Feng L, Wang T, Zhang WM, Yang NT. Scalable processing hollow tungsten carbide spherical superstructure as an enhanced electrocatalyst for hydrogen evolution reaction over a wide pH range. Electrochimi. Acta, 2019, 319, 775.

[5]

Fan X, Zhou H, Guo X. WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano, 2015, 9(5): 5125.

[6]

Guo JJ, Mao Z, Yan XL, Su R, Guan PF, Xu BS, Zhang XF, Qin GW, Pennycook SJ. Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction. Nano Energy, 2016, 28, 261.

[7]

Kim SK, Qiu Y, Zhang YJ, Hurt R, Peterson A. Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction. Appl. Catal. B Environ., 2018, 235, 36.

[8]

Najiba S, Juhl SJ, Mandal M, Liu C, Durygin A, Chen JH, Fei YW, Alem N, Landskron K. Synthesis of nanopolycrystalline mesoporous diamond from periodic mesoporous carbon: Mesoporosity increases with increasing synthesis pressure. Scr. Mater., 2019, 162, 350.

[9]

Sun J, Liang BL, Huang YQ, Wang XD. Synthesis of nanostructured tungsten carbonitride (WNxCy) by carbothermal ammonia reduction on activated carbon and its application in hydrazine decomposition. Catal. Today, 2016, 274, 123.

[10]

Zhang LN, Ma YY, Lang ZL, Wang YH, Khan SU, Yan G, Tan HQ, Zang HY, Li YG. Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A, 2018, 6(31): 15395.

[11]

Kanerva U, Karhu M, Lagerbom J, Kronlöf A, Honkanen M, Turunen E, Laitinen T. Chemical synthesis of WC-Co from water-soluble precursors: The effect of carbon and cobalt additions to WC synthesis. Int. J. Refract. Met. Hard Mater., 2016, 56, 69.

[12]

Hunt ST, Milina M, Wang ZS, Román-Leshkov Y. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci., 2016, 9(10): 3290.

[13]

Xu YT, Xiao XF, Ye ZM, Zhao SL, Shen RA, He CT, Zhang JP, Li YD, Chen XM. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc., 2017, 139(15): 5285.

[14]

Zhao XH, Pattengale B, Fan DH, Zou ZH, Zhao YQ, Du J, Huang JE, Xu CL. Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett., 2018, 3(10): 2520.

[15]

Li ZH, Shao MF, Zhou L, Zhang RK, Zhang C, Wei M, Evans DG, Duan X. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater., 2016, 28(12): 2337.

[16]

Liu SW, Zhang HM, Zhao Q, Zhang X, Liu RR, Ge X, Wang GZ, Zhao HJ, Cai WP. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon, 2016, 106, 74.

[17]

Ren BW, Li DQ, Jin QY, Cui H, Wang CX. Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution. J. Mater. Chem. A, 2017, 5(25): 13196.

[18]

Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem. Rev., 2016, 116(23): 14493.

[19]

Chen PQ, Qin ML, Chen Z, Jia BR, Qu XH. Solution combustion synthesis of nanosized WOx: Characterization, mechanism and excellent photocatalytic properties. RSC Adv., 2016, 6(86): 83101.

[20]

X.Z. Cui, L.L. Zhang, L.M. Zeng, X.H. Zhang, H.R. Chen, and J.L. Shi, Fabrication of tungsten carbide nanoparticle-encased graphite-like mesoporous carbon as a precious metal-free electrocatalyst for oxygen reduction, J. Inorg. Mater., 33(2018), No. 2, art. No. 213.

[21]

Jeong I, Lee J, Vincent Joseph KL, Lee HI, Kim JK, Yoon S, Lee J. Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy, 2014, 9, 392.

[22]

Li T, Fu XB, Xu YJ, Chen DL. Porous three-dimensional core-shell WC@C nanocomposite derived from tungsten-containing inorganic-organic hybrid precursor. Mater. Lett., 2016, 185, 331.

[23]

Nie M, Shen PK, Wu M, Wei ZD, Meng H. A study of oxygen reduction on improved Pt-WC/C electrocatalysts. J. Power Sources, 2006, 162(1): 173.

[24]

J.T. Zhang, J.W. Jiang, H.L. Li, and X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci., 4(2011), No. 10, art. No. 4009.

[25]

S.S. Xu, M.Z. Wang, G. Saranya, N. Chen, L.L. Zhang, Y. He, L.L. Wu, Y.T. Gong, Z.Q. Yao, G.K. Wang, Z.B. Wang, S.J. Zhao, H. Tang, M.Y. Chen, and H.Y. Gou, Pressure-driven catalyst synthesis of Co-doped Fe3C@Carbon nano-onions for efficient oxygen evolution reaction, Appl. Catal. B Environ., 268(2020), art. No. 118385.

[26]

Huang QS, Zhou PJ, Yang H, Zhu LL, Wu HY. CoO nanosheets in situ grown on nitrogen-doped activated carbon as an effective cathodic electrocatalyst for oxygen reduction reaction in microbial fuel cells. Electrochim. Acta, 2017, 232, 339.

[27]

Shen Y, Li L, Xi JY, Qiu XP. A facile approach to fabricate free-standing hydrogen evolution electrodes: Riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. J. Mater. Chem. A, 2016, 4(16): 5817.

[28]

Liu ZW, Huo XT, Xi K, Li P, Yue LN, Huang M, Suo GQ, Xu L, Wang W, Qu XH. Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production. Energy Storage Mater., 2018, 10, 268.

[29]

Zhu H, Sun ZN, Chen ML, Cao HH, Li K, Cai YZ, Wang FH. Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochim. Acta, 2017, 236, 154.

[30]

Song L, Wang T, Wang YL, Xue HR, Fan XL, Guo H, Xia W, Gong H, He JP. Porous iron-tungsten carbide electrocatalyst with high activity and stability toward oxygen reduction reaction: From the self-assisted synthetic mechanism to its active-species probing. ACS Appl. Mater. Interfaces, 2017, 9(4): 3713.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/