Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults

Lixin Hong , Rongxiang Wang , Xiaobo Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1570 -1577.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1570 -1577. DOI: 10.1007/s12613-021-2264-8
Article

Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults

Author information +
History +
PDF

Abstract

In order to study the effects of Nd addition on microstructure and mechanical properties of Mg-Gd-Zn-Zr alloys, the microstructure and mechanical properties of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5wt%, and 1wt%) alloys were investigated by using optical microscope, scanning electron microscope, X-ray diffractometer, nano indentation tester, microhardness tester, and tensile testing machine. The results show that the microstructures mainly consist of α-Mg matrix, eutectic phase, and stacking faults. The addition of Nd plays a significant role in grain refinement and uniform microstructure. The tensile yield strength and microhardness increase but the compression yield strength decreases with increasing Nd addition, leading to weakening tension—compression yield asymmetry in reverse of the Mg-12Gd-2Zn-xNd-0.4Zr alloys. The highest ultimate tensile strength (194 MPa) and ultimate compression strength (397 MPa) are obtained with 1wt% Nd addition of the alloy.

Keywords

magnesium alloy / neodymium / microstructure / stacking fault / mechanical properties

Cite this article

Download citation ▾
Lixin Hong, Rongxiang Wang, Xiaobo Zhang. Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1570-1577 DOI:10.1007/s12613-021-2264-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li YX, Yang CL, Zeng XQ, Jin PP, Qiu D, Ding WJ. Microstructure evolution and mechanical properties of magnesium alloys containing long period stacking ordered phase. Mater. Charact., 2018, 141, 286.

[2]

Xu DK, Han EH, Xu YB. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Prog. Nat. Sci. Mater. Int., 2016, 26(2): 117.

[3]

Liu QZ, Ding XF, Liu YP, Wei XJ. Analysis on micro-structure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy and its reinforcement mechanism. J. Alloys Compd., 2017, 690, 961.

[4]

Xie JS, Zhang JH, You ZH, et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J. Magnes. Alloys, 2021, 9(1): 41.

[5]

Majd AM, Farzinfar M, Pashakhanlou M, Nayyeri MJ. Effect of RE elements on the microstructural and mechanical properties of as-cast and age hardening processed Mg-4Al-2Sn alloy. J. Magnes. Alloys, 2018, 6(3): 309.

[6]

Zhang Z, Zhang JH, Wang J, et al. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[7]

S.J. Wang, Z. Han, Y.J. Nie, et al., Modified mechanical properties of Mg-Nd-Zn-Ag-Zr alloy by solution treatment for cardiovascular stent application, Mater. Res. Express, 6(2019), No. 8, art. No. 085416.

[8]

Luo WB, Xue ZY, Mao WM. Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase. Int. J. Miner. Metall. Mater., 2019, 26(7): 869.

[9]

Chen JX, Tan LL, Etim IP, Yang K. Comparative study of the effect of Nd and Y content on the mechanical and biodegradable properties of Mg-Zn-Zr-xNd/Y (x = 0.5, 1, 2) alloys. Mater. Technol., 2018, 33(10): 659.

[10]

Singh LK, Bhadauria A, Srinivasan A, Pillai UTS, Pai BC. Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy. Int. J. Miner. Metall. Mater., 2017, 24(8): 901.

[11]

Zhang XB, Dai JW, Dong QS, Ba ZX, Wu YJ. Corrosion behavior and mechanical degradation of as-extruded Mg-Gd-Zn-Zr alloys for orthopedic application. J. Biomed. Mater. Res. Part B, 2020, 108(3): 698.

[12]

Kawamura Y, Hayashi K, Inoue A, Masumoto T. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater. Trans., 2001, 42(7): 1172.

[13]

Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. J. Mater. Res., 2001, 16(7): 1894.

[14]

Zhang YH, Li YQ, Zhang W, et al. Gaseous hydrogen storage properties of Mg-Y-Ni-Cu alloys prepared by melt spinning. J. Rare Earths, 2019, 37(7): 750.

[15]

Geng ZW, Xiao DH, Chen L. Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys. J. Alloys Compd., 2016, 686, 145.

[16]

Ding ZB, Zhao YH, Lu RP, et al. Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys. Trans. Nonferrous Met. Soc. China, 2019, 29(4): 722.

[17]

Ouyang SJ, Liu WC, Wu GH, et al. Microstructure and mechanical properties of as-cast Mg-8Li-xZn-yGd (x = 1, 2, 3, 4; y = 1, 2) alloys. Trans. Nonferrous Met. Soc. China, 2019, 29(6): 1211.

[18]

Hagihara K, Li ZX, Yamasaki M, Kawamura Y, Nakano T. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys. Acta Mater., 2019, 163, 226.

[19]

Tahreen N, Zhang DF, Pan FS, Jiang XQ, Li DY, Chen DL. Strengthening mechanisms in magnesium alloys containing ternary I, W and LPSO phases. J. Mater. Sci. Technol., 2018, 34(7): 1110.

[20]

Dai JW, Zhang XB, Fei Y, Wang ZZ, Sui HM. Effect of solution treatment on microstructure and corrosion properties of Mg-4Gd-1Y-1Zn-0.5Ca-1Zr alloy. Acta Metall. Sinica Engl. Lett., 2018, 31(8): 865.

[21]

Xue ZY, Ren YJ, Luo WB, Ren Y, Xu P, Xu C. Microstructure evolution and mechanical properties of a large-sized ingot of Mg-9Gd-3Y-1.5Zn-0.5Zr (wt%) alloy after a lower-temperature homogenization treatment. Int. J. Miner. Metall. Mater., 2017, 24(3): 271.

[22]

Xu C, Zhang JH, Liu SJ, et al. Microstructure, mechanical and damping properties of Mg-Er-Gd-Zn alloy reinforced with stacking faults. Mater. Des., 2015, 79, 53.

[23]

Y. Feng, J.H. Zhang, P.F. Qin, et al., Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg-Er-Y-Zn alloy containing nano-spaced stacking faults, Mater. Charact., 155(2019), art. No. 109823.

[24]

Zhang L, Zhang JH, Xu C, Jing YB, Zhuang JP, Wu RZ, Zhang ML. Formation of stacking faults for improving the performance of biodegradable Mg-Ho-Zn alloy. Mater. Lett., 2014, 133, 158.

[25]

Si HJ, Jiang YX, Tang Y, Zhang LJ. Stable and metastable phase equilibria in binary Mg-Gd system: A comprehensive understanding aided by CALPHAD modeling. J. Magnes. Alloys, 2019, 7(3): 501.

[26]

Zhang XB, Ba ZX, Wang ZZ, Wu YJ, Xue YJ. Effect of LPSO structure on mechanical properties and corrosion behavior of as-extruded GZ51K magnesium alloy. Mater. Lett., 2016, 163, 250.

[27]

Zhang XG, Meng LG, Fang CF, Peng P, Ja F, Hao H. Effect of Nd on the microstructure and mechanical properties of Mg-8Gd-5Y-2Zn-0.5Zr alloy. Mater. Sci. Eng. A, 2013, 586, 19.

[28]

Z.B. Ding, R.P. Lu, Y.H. Zhao, et al., The microstructure and mechanical properties of As-cast Mg-10Gd-3Y-xZn-0.6Zr (x = 0, 0.5, 1 and 2 wt%) alloys, Mater. Res., 21(2018), No. 5, art. No. e20170992.

[29]

Li M, Zhang K, Du ZW, Li XG, Ma ML. Microstructure evolution and mechanical properties of Mg-7Gd-3Y-1Nd-1Zn-0.5Zr alloy. Trans. Nonferrous Met. Soc. China, 2016, 26(7): 1835.

[30]

Pan FS, Luo SQ, Tang AT, Peng J, Lu Y. Influence of stacking fault energy on formation of long period stacking ordered structures in Mg-Zn-Y-Zr alloys. Prog. Nat. Sci.: Mater. Int., 2011, 21(6): 485.

[31]

Kamrani S, Fleck C. Effects of calcium and rare-earth elements on the microstructure and tension—compression yield asymmetry of ZEK100 alloy. Mater. Sci. Eng. A, 2014, 618, 238.

[32]

Dogan E, Karaman I, Ayoub G, Kridli G. Reduction in tension-compression asymmetry via grain refinement and texture design in Mg-3Al-1Zn sheets. Mater. Sci. Eng. A, 2014, 610, 220.

[33]

Park SH, Lee JH, Moon BG, You BS. Tension-compression yield asymmetry in as-cast magnesium alloy. J. Alloys Compd., 2014, 617, 277.

[34]

Jiang Y, Chen YA, Wang Y. Compound role of tension twins and compression twins in microstructure and mechanical properties of Mg-Sn-Li rod. Mater. Sci. Eng. A, 2017, 682, 31.

[35]

Xu XY, Chen XH, Du WW, Geng YX, Pan FS. Effect of Nd on microstructure and mechanical properties of asextruded Mg-Y-Zr-Nd alloy. J. Mater. Sci. Technol., 2017, 33(9): 926.

[36]

Hu GS, Zhang DF, Tang T, et al. Effects of Nd addition on microstructure and mechanical properties of Mg-6Zn-1Mn-4Sn alloy. Mater. Sci. Eng. A, 2015, 634, 5.

[37]

Liu X, Zhang ZQ, Le QC, Bao L. Effects of Nd/Gd value on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys. J. Magnes. Alloys, 2016, 4(3): 214.

[38]

Zhang X, Dai J, Yang H, Liu S, He X, Wang Z. Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg-Gd-Zn(-Ca) alloys. Mater. Technol., 2017, 32(7): 399.

[39]

Zengin H, Turen Y. Effect of Y addition on microstructure and corrosion behavior of extruded Mg-Zn-Nd-Zr alloy. J. Magnes. Alloys, 2020, 8(3): 640.

[40]

Matsubara K, Kimizuka H, Ogata S. Formation of (1121) twins from I1-type stacking faults in Mg: A molecular dynamics study. Comput. Mater. Sci., 2016, 122, 314.

[41]

Yin BL, Wu ZX, Curtin WA. First-principles calculations of stacking fault energies in Mg-Y, Mg-Al and Mg-Zn alloys and implications for <c + a>activity. Acta Mater., 2017, 136, 249.

[42]

Du YX, Wu YJ, Peng LM, Chen J, Zeng XQ, Ding WJ. Formation of lamellar phase with 18R-type LPSO structure in an as-cast Mg96Gd3Zn1(at%) alloy. Mater. Lett., 2016, 169, 168.

[43]

Wu YJ, Lin DL, Zeng XQ, Peng LM, Ding WJ. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy. J. Mater. Sci., 2009, 44(6): 1607.

[44]

Zhang X, Kairy SK, Dai J, Birbilis N. A closer look at the role of nanometer scale solute-rich stacking faults in the localized corrosion of a magnesium alloy GZ31K. J. Electrochem. Soc., 2018, 165(7): C310.

[45]

Zhang XB, Dai JW, Zhang RF, Ba ZX, Birbilis N. Corrosion behavior of Mg-3Gd-1Zn-0.4Zr alloy with and without stacking faults. J. Magnes. Alloys, 2019, 7(2): 240.

[46]

Yin SQ, Zhang ZQ, Liu X, et al. Effects of Zn/Gd ratio on the microstructures and mechanical properties of Mg-Zn-Gd-Zr alloys. Mater. Sci. Eng. A, 2017, 695, 135.

[47]

Zong XM, Wang D, Liu W, Nie KB, Xu CX, Zhang JS. Effect of precipitated phases on corrosion of Mg95.8Gd3Zn1Zr0.2 alloy with long-period stacking ordered structure. Acta Metall. Sinica Engl. Lett., 2016, 29(1): 32.

[48]

Wu YJ, Zeng XQ, Lin DL, Peng LM, Ding WJ. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K. J. Alloys Compd., 2009, 477(1–2): 193.

[49]

Ding WJ, Wu YJ, Peng LM, Zeng XQ, Yuan GY, Lin DL. Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg-Gd-Zn-Zr alloys. J. Mater. Res., 2009, 24(5): 1842.

[50]

Zhang JY, Xu M, Teng XY, Zuo M. Effect of Gd addition on microstructure and corrosion behaviors of Mg-Zn-Y alloy. J. Magnes. Alloys, 2016, 4(4): 319.

[51]

Wei J, Wang QD, Zhang L, et al. Microstructure refinement of Mg-Al-RE alloy by Gd addition. Mater. Lett., 2019, 246, 125.

[52]

Hu XY, Fu PH, StJohn D, Peng LM, Sun M, Zhang MX. On grain coarsening and refining of the Mg-3Al alloy by Sm. J. Alloys Compd., 2016, 663, 387.

[53]

Wei K, Xiao LR, Gao B, et al. Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults. J. Magnes. Alloys, 2020, 8(4): 1221.

[54]

He JH, Jin L, Wang FH, Dong S, Dong J. Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions. J. Magnes. Alloys, 2017, 5(4): 423.

[55]

Lv S, Meng FZ, Lu XL, et al. Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mg-6.0Zn-0.5Zr (wt.%) alloy. J. Alloys Compd., 2019, 806, 1166.

[56]

Papanastasiou P, Durban D. Singular crack-tip plastic fields in Tresca and Mohr-Coulomb solids. Int. J. Solids Struct., 2018, 136–137, 250.

[57]

Q.H. Wang, Y. Song, B. Jiang, et al., Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion, Mater. Sci. Eng. A, 769(2020), art. No. 138476.

[58]

Tong LB, Zheng MY, Kamado S, et al. Reducing the tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy via equal channel angular pressing. J. Magnes. Alloys, 2015, 3(4): 302.

[59]

Yu HH, Xin YC, Wang MY, Liu Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol., 2018, 34(2): 248.

[60]

Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, and M.Y. Zheng, Tension-compression asymmetry of extruded Mg-Gd-Y-Zr alloy with a bimodal microstructure studied by in situ synchrotron diffraction, Mater. Des., 170(2019), art. No. 107705.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/