Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces

R. Jafari , B. Eghbali

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1608 -1617.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1608 -1617. DOI: 10.1007/s12613-021-2263-9
Article

Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces

Author information +
History +
PDF

Abstract

The tri-metal Ti-Al-Nb composites were processed through three procedures: hot pressing, rolling, and hot pressing, followed by subsequent rolling. The fabricated composites were then subjected to annealing at 600, 625, and 650°C temperatures at different times. Microstructure observation at the interfaces reveals that the increase in plastic deformation strain significantly affects TiAl3 intermetallic layers’ evolution and accelerates the layers’ growth. On the contrary, the amount of applied strain does not significantly affect the evolution of the NbAl3 intermetallic layer thickness. It was also found that Al and Ti atoms’ diffusion has occurred throughout the TiAl3 layer, but only Al atoms diffuse through the NbAl3 layer. The slow growth rate of the NbAl3 intermetallic layer is due to the lack of diffusion of Nb atoms and the high activation energy of Al atoms’ reaction with Nb atoms.

Keywords

intermetallic compounds / diffusion / Ti/Al/Nb composite / deformation / annealing

Cite this article

Download citation ▾
R. Jafari, B. Eghbali. Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1608-1617 DOI:10.1007/s12613-021-2263-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patselov A, Greenberg B, Gladkovskii S, Lavrikov R, Borodin E. Layered metal-intermetallic composites in Ti-Al system: Strength under static and dynamic load. AASRI Procedia, 2012, 3, 107.

[2]

Abd-Elwahed MS, Meselhy AF. Experimental investigation on the mechanical, structural and thermal properties of Cu-ZrO2 nanocomposites hybridized by graphene nanoplatelets. Ceram. Int., 2020, 46(7): 9198.

[3]

Khdair AI, Fathy A. Enhanced strength and ductility of Al-SiC nanocomposites synthesized by accumulative roll bonding. J. Mater. Res. Technol., 2020, 9(1): 478.

[4]

Luo JG, Acoff VL. Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils. Mater. Sci. Eng. A, 2006, 433(1–2): 334.

[5]

Cui XP, Fan GH, Geng L, Wang Y, Zhang HW, Peng HX. Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure. Scripta Mater., 2012, 66(5): 276

[6]

Peng Q, Yang B, Liu LB, Song CJ, Friedrich B. Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures. J. Alloys Compd., 2016, 656, 530.

[7]

W. Sun, F.H. You, F.T. Kong, X.P. Wang, and Y.Y. Chen, Fracture mechanism of a high tensile strength and fracture toughness Ti6Al4V-TiAl laminated composite, J. Alloys Compd., 820(2020), art. No. 153088.

[8]

Chaudhari GP, Acoff VL. Titanium aluminide sheets made using roll bonding and reaction annealing. Intermetallics, 2010, 18(4): 472.

[9]

Appel F, Paul JDH, Staron P, Oehring M, Kolednik O, Predan J, Fischer FD. The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys. Mater. Sci. Eng. A, 2018, 709, 17.

[10]

Ding XF, Lin JP, Zhang LQ, Su YQ, Chen GL. Microstructural control of TiAl-Nb alloys by directional solidification. Acta Mater., 2012, 60(2): 498.

[11]

Zhang RG, Acoff VL. Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils. Mater. Sci. Eng. A, 2007, 463(1–2): 67

[12]

Xu XJ, Xu LH, Lin JP, Wang YL, Lin Z, Chen GL. Pilot processing and microstructure control of high Nb containing TiAl alloy. Intermetallics, 2005, 13(3–4): 337.

[13]

Jafari R, Eghbali B, Adhami M. Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites. Mater. Chem. Phys., 2018, 213, 313.

[14]

Zhao YQ, Zhang D, Sun YB, Wang ZJ, Zheng RX, Ma CL. Fabrication of TiAlNb alloy sheet by sintering pure metal foils. Rare Met., 2011, 30(1): 331.

[15]

Sun YB, Zhao YQ, Zhang D, Liu CY, Diao HY, Ma CL. Multilayered Ti-Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils. Trans. Nonferrous Met. Soc. China, 2011, 21(8): 1722.

[16]

Patselov AM, Rybin VV, Grinberg BA, Ivanov MA, Eremina OV. Synthesis and properties of Ti-Al laminated composites with an intermetallic layer. Russ. Metall., 2011, 2011(4): 356.

[17]

Yu HL, Lu C, Tieu AK, Li HJ, Godbole A, Kong C. Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater. Sci. Eng. A, 2016, 660, 195.

[18]

Basiri Tochaee E, Madaah Hosseini HR, Seyed Reihani SM. Fabrication of high strength in situ Al-Al3Ti nanocomposite by mechanical alloying and hot extrusion: Investigation of fracture toughness. Mater. Sci. Eng. A, 2016, 658, 246.

[19]

M. Shaat, A. Fathy, and A. Wagih, Correlation between grain boundary evolution and mechanical properties of ultrafinegrained metals, Mech. Mater., 143(2020), art. No. 103321.

[20]

Chung DS, Enoki M, Kishi T. Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials. Sci. Technol. Adv. Mater., 2002, 3(2): 129.

[21]

Coffey KR, Barmak K, Rudman DA, Foner S. Thin film reaction kinetics of niobium/aluminum multilayers. J. Appl. Phys., 1992, 72(4): 1341.

[22]

Lucadamo G, Barmak K, Carpenter DT, Rickman JM. Microstructure evolution during solid state reactions of Nb/Al multilayers. Acta Mater., 2001, 49(14): 2813.

[23]

Xu L, Cui YY, Hao YL, Yang R. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater. Sci. Eng. A, 2006, 435–436, 638.

[24]

Zhang D, Sun YB, Zhao YQ, Wang TT, Chen J, Li HX, Ma CL. Interfacial products in SiC fiber reinforced Ti-Al based intermetallic alloys. Rare Met., 2011, 30(1): 524.

[25]

Wu H, Fan GH, Cui XP, Geng L, Qin SH, Huang M. A novel approach to accelerate the reaction between Ti and Al. Micron, 2014, 56, 49.

[26]

Mishin Y, Herzig C. Diffusion in the Ti-Al system. Acta Mater., 2000, 48(3): 589.

[27]

Van Loo FJJ, Rieck GD. Diffusion in the titanium-aluminium system—I. Interdiffusion between solid Al and Ti or Ti-Al alloys. Acta Metall., 1973, 21(1): 61.

[28]

Luo JG, Acoff VL. Interfacial reactions of titanium and aluminum during diffusion welding. Weld. J., 2000, 79(9): 239

[29]

Fronczek DM, Wojewoda-Budka J, Chulist R, Sypien A, Korneva A, Szulc Z, Schell N, Zieba P. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater. Des., 2016, 91, 80.

[30]

Bay N. Mechanisms producing metallic bonds in cold welding. Weld. J., 1983, 62(5): 137

[31]

Slama G, Vignes A. Coating of niobium and niobium alloys with aluminium: Part II. Hot-dipped coatings. J. Less Common Met., 1971, 24(1): 1.

[32]

Ma M, Huo P, Liu WC, Wang GJ, Wang DM. Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding. Mater. Sci. Eng. A, 2015, 636, 301.

[33]

Nofar M, Madaah Hosseini HR, Kolagar-Daroonkolaie N. Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method. Mater. Des., 2009, 30(2): 280.

[34]

Goda DJ, Richards NL, Caley WF, Chaturvedi MC. The effect of processing variables on the structure and chemistry of Ti-aluminide based LMCS. Mater. Sci. Eng. A, 2002, 334(1–2): 280.

[35]

V.P. Dybkov, Growth Kinetics of Chemical Compound Layers, Cambridge International Science Publishing Ltd, 1998.

[36]

Mirjalili M, Soltanieh M, Matsuura K, Ohno M. On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics., 2013, 32, 297.

[37]

Liu XY, Bennema P. Morphology of crystals: Internal and external controlling factors. Phys. Rev. B, 1994, 49(2): 765.

[38]

P. Villars and H. Okamoto, Al-Nb Binary Phase Diagram 0–100 at.% Nb, Springer Materials, Japan [2016-06-02]. http://materials.springer.com/isp/phase-diagram/docs/c_0103042

[39]

Cui XP, Fan GH, Geng L, Wang Y, Huang LJ, Peng HX. Growth kinetics of TiAl3 layer in multi-laminated Ti-(TiB2/Al) composite sheets during annealing treatment. Mater. Sci. Eng. A, 2012, 539, 337.

[40]

Nakayama Y, Mabuchi H. Formation of ternary L12 compounds in Al3Ti-base alloys. Intermetallics, 1993, 1(1): 41.

[41]

Takemoto T, Okamoto I. Intermetallic compounds formed during brazing of titanium with aluminium filler metals. J. Mater. Sci., 1988, 23(4): 1301.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/