Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag

Zhengde Pang , Yuyang Jiang , Jiawei Ling , Xuewei Lü , Zhiming Yan

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1170 -1178.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1170 -1178. DOI: 10.1007/s12613-021-2262-x
Article

Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag

Author information +
History +
PDF

Abstract

Aiming at the process of smelting ultra-high (>80%) or even full vanadium titanomagnetite in blast furnace, we are conducting a series of works on physics character of high TiO2 bearing blast furnace slag (BFS) for slag optimization. This work discussed the density and surface tension of high TiO2 bearing BFS using the Archimedean principle and the maximum bubble pressure method, respectively. The influence of TiO2 content and the MgO/CaO mass ratio on the density and surface tension of CaO-SiO2-TiO2-MgO-Al2O3 slags were investigated. Results indicated that the density of slags decreased with the TiO2 content increasing from 20wt% to 30wt%, but it increased slightly with the MgO/CaO mass ratio increasing from 0.32 to 0.73. In view of silicate network structure, the density and the degree of polymerization (DOP) of network structure have a consistent trend. The addition of TiO2 reduced (Q 3)2/(Q 2) ratio (Q 2 and Q 3 represent structural unit with bridge oxygen number of 2 and 3, respectively) and then decreased DOP, which led to the decrease of slag density. The surface tension of CaO-SiO2-TiO2-MgO-Al2O3 slags decreased dramatically with the TiO2 content increasing from 20wt% to 30wt%. Conversely, it increased with the MgO/CaO mass ratio increasing from 0.32 to 0.73. Furthermore, the iso-surface tension lines were obtained under 1723 K using the Tanaka developed model in view of Butler formula. It may be useful for slag optimization of ultra-high proportion (>80%) or even full vanadium titanomagnetite under BF smelting.

Keywords

vanadium titanomagnetite / density / surface tension / iso-surface tension lines

Cite this article

Download citation ▾
Zhengde Pang, Yuyang Jiang, Jiawei Ling, Xuewei Lü, Zhiming Yan. Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(6): 1170-1178 DOI:10.1007/s12613-021-2262-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hino M, Nagasaka T, Katsumata A, Higuchi KI, Yamaguchi K, Kon-No N. Simulation of primary-slag melting behavior in the cohesive zone of a blast furnace, considering the effect of Al2O3, FetO, and basicity in the sinter ore. Metall. Mater. Trans. B, 1999, 30(4): 671

[2]

Siddiqi N, Bhoi B, Paramguru RK, Sahajwalla V, Ostrovski O. Slag-graphite wettability and reaction kinetics Part 1. Kinetics and mechanism of molten FeO reduction reaction. Ironmaking Steelmaking, 2000, 27(5): 367

[3]

Wegener M, Muhmood L, Sun S, Deev AV. Surface tension measurements of calcia-alumina slags: A comparison of dynamic methods. Metall. Mater. Trans. B, 2015, 46(1): 316

[4]

Ito K, Fruehan RJ. Study on the foaming of CaO-SiO2-FeO slags: Part I. Foaming parameters and experimental results. Metall. Trans. B, 1989, 20(4): 509

[5]

Ito K, Fruehan RJ. Study on the foaming of CaO-SiO2-FeO slags: Part II. Dimensional analysis and foaming in iron and steelmaking processes. Metall. Trans. B, 1989, 20(4): 515

[6]

George HL, Longbottom RJ, Chew SJ, Monaghan BJ. Flow of molten slag through a coke packed bed. ISIJ Int., 2014, 54(4): 820

[7]

Geleta DD, Siddiqui MIH, Lee J. Characterization of slag flow in fixed packed bed of coke particles. Metall. Mater. Trans. B, 2020, 51(1): 102

[8]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684

[9]

Chen DS, Song B, Wang LN, Qi T, Wang Y, Wang WJ. Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal. Miner. Eng., 2011, 24(8): 864

[10]

Valighazvini F, Rashchi F, Khayyam Nekouei R. Recovery of titanium from blast furnace slag. Ind. Eng. Chem. Res., 2013, 52(4): 1723

[11]

Liu P, Zhang LB, Liu BG, He GJ, Peng JH, Huang MY. Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag. Int. J. Miner. Metall. Mater., 2021, 28(1): 88

[12]

Gao LZ, Ma TX, Hu MJ, Yan ZM, XW, Hu ML. Effect of titanium content on the precipitation behavior of carbon-saturated molten pig iron. Int. J. Miner. Metall. Mater., 2019, 26(4): 483

[13]

Xiang JY, Huang QY, Lv X, Bai CG. Effect of mechanical activation treatment on the recovery of vanadium from converter slag. Metall. Mater. Trans. B, 2017, 48(5): 2759

[14]

Ma GQ, Cheng M. Technological study of titanium slag production from titanium-bearing blast furnace slag. Adv. Mater. Res., 2014, 962–965, 793

[15]

Jiang TQ, Dong HG, Guo YF, Li GH, Yang YB. Study on leaching Ti from Ti bearing blast furnace slag by sulphuric acid. Miner. Process. Extr. Metall., 2010, 119(1): 33

[16]

Pang ZD, Lv XW, Ling JW, Jiang YY, Yan ZM, Dang J. Blast furnace ironmaking process with super high TiO2 in the slag: High-temperature structure of the slag. Metall. Mater. Trans. B, 2020, 51(5): 2348

[17]

Yan ZM, Lv XW, Pang ZD, Lv XM, Bai CG. Transition of blast furnace slag from silicate based to aluminate based: Density and surface tension. Metall. Mater. Trans. B, 2018, 49(3): 1322

[18]

Liu YH, Lv XW, Bai CG, Yu B. Surface tension of the molten blast furnace slag bearing TiO2: Measurement and evaluation. ISIJ Int., 2014, 54(10): 2154

[19]

Fainerman VB, Miller R, Joos P. The measurement of dynamic surface tension by the maximum bubble pressure method. Colloid Polym. Sci., 1994, 272(6): 731

[20]

Ono N, Kaneko T, Nishiguchi S, Shoji M. Measurement of temperature dependence of surface tension of alcohol aqueous solutions by maximum bubble pressure method. J. Therm. Sci. Technol., 2009, 4(2): 284

[21]

Friedrichs HA, Ronkow LW, Vermot P, Bliznjukow SA. New method for simultaneous measurement of viscosity, density and surface tension of metallic melts at high temperatures. Steel Res., 1995, 66(12): 509

[22]

Liu G, Toguri JM, Stubina NM. Surface tension and density of the molten LaCl3-NaCl binary system. Can. J. Chem., 1987, 65(12): 2779

[23]

Fujisawa T, Utigard T, Toguri JM. Surface tension and density of the molten PbCl2-KCl-NaCl ternary system. Can. J. Chem., 1985, 63(5): 1132

[24]

Pamies A, Garcia Cordovilla C, Louis E. The measurement of surface tension of liquid aluminium by means of the maximum bubble pressure method: The effect of surface oxidation. Scripta Metall., 1984, 18(9): 869

[25]

Int. J. Thermophys., 2017, 38(7)

[26]

Oliveira FA, Miller A, Madías J. Surface tension, densities and viscosities of some CaO-Al2O3 slags. Rev. Metal., 1999, 35(2): 91

[27]

Vadász P, Havlík M, Danêk V. Density and surface tension of calcium-ferritic slags I. The systems Cao-FeO-Fe2O3-SiO2 and CaO-FeO-Fe2O3-Al2O3. Can. Metall. Q., 2000, 39(2): 143

[28]

Mills KC. Slag Atlas, 1995, 2nd ed. Germany, Verlag Stahleisen

[29]

Sukenaga S, Haruki S, Nomoto Y, Saito N, Nakashima K. Density and surface tension of CaO-SiO2-Al2O3-R2O (R=Li, Na, K) melts. ISIJ Int., 2011, 51(8): 1285

[30]

Bochorishvili AI, Yakobashvili SB. Effect of metal oxide on the surface tension of lime-alumina slags. Svar. Proiz., 1968, 10(1): 13

[31]

Sukenaga S, Higo T, Shibata H, Saito N, Nakashima K. Effect of CaO/SiO2 ratio on surface tension of CaO-SiO2-Al2O3-MgO melts. ISIJ Int., 2015, 55(6): 1299

[32]

Kingery WD. Surface tension of some liquid oxides and their temperature coefficients. J. Am. Ceram. Soc., 1959, 42(1): 6

[33]

Butler JAV. The thermodynamics of the surfaces of solutions. Proc. R. Soc. London A, 1932, 135(827): 348

[34]

Mysen BO, Ryerson FJ, Virgo D. The influence of TiO2 on the structure and derivative properties of silicate melts. Am Miner., 1980, 65(11-1): 1150

[35]

Mysen BO, Virgo D, Scarfe CM, Cronin DJ. Relations between the anionic structure and viscosity of silicate melts; a Raman spectroscopic study. Am. Mineral., 1980, 65(7–8): 690

[36]

Mysen BO, Virgo D, Kushiro I. The structural role of aluminium in silicate melts—A Raman spectroscopic study at 1 atmosphere. Am. Mineral., 1981, 66(7): 678

[37]

Mysen BO, Virgo D, Seifert FA. The structure of silicate melts: Implications for chemical and physical properties of natural magma. Rev. Geophys. Space Phys., 1982, 20(3): 353

[38]

Mysen BO, Finger LW, Virgo D, Seifert FA. Curve-fitting of Raman spectra of silicate glasses. Am. Mineral., 1982, 67(7): 686

[39]

Mills KC, Hayashi M, Wang LJ, Watanabe T. The structure and properties of silicate slags. Treatise on Process Metallurgy, 2014, Amsterdam, Elsevier, 149

[40]

Mills KC. The estimation of slag properties. Southern African Pyrometallurgy 2011 International Conference, 2011

[41]

Mills KC, Yuan L, Jones RT. Estimating the physical properties of slags. J. South Afr. Inst. Min. Metall., 2011, 111, 649

[42]

Tanaka T, Hack K, Iida T, Hara S. Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Int. J. Mater. Res., 1996, 87(5): 380

[43]

Tanaka T, Kitamura T, Back IA. Evaluation of surface tension of molten ionic mixtures. ISIJ Int., 2006, 46(3): 400

[44]

Nakamoto M, Kiyose A, Tanaka T, Holappa L, Hämäläinen M. Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO. ISIJ Int., 2007, 47(1): 38

[45]

Nakamoto M, Hanao M, Tanaka T, Kawamoto M, Holappa L, Hämäläinen M. Estimation of surface tension of molten silicates using neural network computation. ISIJ Int., 2007, 47(8): 1075

[46]

Hanao M, Tanaka T, Kawamoto M, Takatani K. Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int., 2007, 47(7): 935

[47]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 1976, 32(5): 751

[48]

Sohn I, Min DJ. A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking. Steel Res. Int., 2012, 83(7): 611

[49]

Knoche R, Dingwell DB, Webb SL. Melt densities for leucogranites and granitic pegmatites: Partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3. Geochim. Cosmochim. Acta, 1995, 59(22): 4645

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/