Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review

Ya Wei , Yu Fu , Zhi-min Pan , Yi-chong Ma , Hong-xu Cheng , Qian-cheng Zhao , Hong Luo , Xiao-gang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 915 -930.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 915 -930. DOI: 10.1007/s12613-021-2257-7
Invited Review

Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review

Author information +
History +
PDF

Abstract

High-temperature oxidation is a common failure in high-temperature environments, which widely occur in aircraft engines and aerospace thrusters; as a result, the development of anti-high-temperature oxidation materials has been pursued. Ni-based alloys are a common high-temperature material; however, they are too expensive. High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties. The recent achievements of high-temperature oxidation are reviewed in this paper. The high-temperature oxidation environment, temperature, phase structure, alloy elements, and preparation methods of high-entropy alloys are summarized. The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated. Current research, material selection, and application prospects of high-temperature oxidation are introduced.

Keywords

high-entropy alloy / high-temperature oxidation / influencing factors / oxidation mechanism

Cite this article

Download citation ▾
Ya Wei, Yu Fu, Zhi-min Pan, Yi-chong Ma, Hong-xu Cheng, Qian-cheng Zhao, Hong Luo, Xiao-gang Li. Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 915-930 DOI:10.1007/s12613-021-2257-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meng XB, Lu Q, Li JG, Jin T, Sun XF, Zhang J, Chen ZQ, Wang YH, Hu ZQ. Modes of grain selection in spiral selector during directional solidification of nickel-base superalloys. J. Mater. Sci. Technol., 2012, 28(3): 214.

[2]

Meng XB, Li JG, Jin T, Sun XF, Sun CB, Hu ZQ. Evolution of grain selection in spiral selector during directional solidification of nickel-base superalloys. J. Mater. Sci. Technol., 2011, 27(2): 118.

[3]

Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects. Int. Mater. Rev., 2019, 64(6): 355.

[4]

Chen JH, Rogers PM, Little JA. Oxidation behavior of several chromia-forming commercial nickel-base superalloys. Oxid. Met., 1997, 47(5–6): 381.

[5]

Z.H. Tan, X.G. Wang, W. Song, Y.H. Yang, J.L. Liu, J.D. Liu, L. Yang, Y.Z. Zhou, and X.F. Sun, Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature, Vacuum, 175(2020), art. No. 109284.

[6]

Yu BH, Li YP, Nie Y, Mei H. High temperature oxidation behavior of a novel cobalt-nickel-base superalloy. J. Alloys Compd., 2018, 765, 1148.

[7]

Sato A, Chiu YL, Reed RC. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater., 2011, 59(1): 225.

[8]

Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[9]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[10]

Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy, 2014, 16(1): 494.

[11]

Yeh JW. Recent progress in high-entropy alloys. Eur. J. Control, 2006, 31(6): 633

[12]

Zhang C, Zhang F, Jin K, Bei HB, Chen SL, Cao WS, Zhu J, Lv DC. Understanding of the elemental diffusion behavior in concentrated solid solution alloys. J. Phase Equilib. Diffus., 2017, 38(4): 434.

[13]

Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater., 2014, 65, 85.

[14]

Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater., 2013, 61(13): 4887.

[15]

Pickering EJ, Jones NG. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev., 2016, 61(3): 183.

[16]

Zhu S, Du WB, Wang XM, Han GF. High mixing entropy alloys design with high anticorrosion and wear-resistance properties. Adv. Mater. Res., 2013, 815, 19.

[17]

Yeh JW. Physical metallurgy of high-entropy alloys. JOM, 2015, 67(10): 2254.

[18]

Huang YS, Chen L, Lui HW, Cai MH, Yeh JW. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A, 2007, 457(1–2): 77.

[19]

Praveen S, Anupam A, Tilak R, Kottada RS. Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys., 2018, 210, 57.

[20]

Dolique V, Thomann AL, Brault P, Tessier Y, Gillon P. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surf. Coat. Technol., 2010, 204(12–13): 1989.

[21]

Karati A, Guruvidyathri K, Hariharan VS, Murty BS. Thermal stability of AlCoFeMnNi high-entropy alloy. Scripta Mater., 2019, 162, 465.

[22]

Q.L. Xu, Y. Zhang, S.H. Liu, C.J. Li, and C.X. Li, High-temperature oxidation behavior of CuAlNiCrFe high-entropy alloy bond coats deposited using high-speed laser cladding process, Surf. Coat. Technol., 398(2020), art. No. 126093.

[23]

Lin YP, Yang TF, Lang L, Shan C, Deng HQ, Hu WY, Gao F. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater., 2020, 196, 133.

[24]

Barr CM, Nathaniel JE, Unocic KA, Liu JP, Zhang Y, Wang YQ, Taheri ML. Exploring radiation induced segregation mechanisms at grain boundaries in equiatomic CoCrFeNiMn high entropy alloy under heavy ion irradiation. Scripta Mater., 2018, 156, 80.

[25]

G. Pu, L.W. Lin, R. Ang, K. Zhang, B. Liu, B. Liu, T. Peng, S.F. Liu, and Q.R. Li, Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1.5CoCrF-eNi high entropy alloy films under He ion irradiation, Appl. Surf. Sci., 516(2020), art. No. 146129.

[26]

D. Patel, M.D. Richardson, B. Jim, S. Akhmadaliev, R. Goodall, and A.S. Gandy, Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04, J. Nucl. Mater., 531(2020), art. No. 152005.

[27]

Lu P, Saal JE, Olson GB, Li TS, Swanson OJ, Frankel GS, Gerard AY, Quiambao KF, Scully JR. Computational materials design of a corrosion resistant high entropy alloy for harsh environments. Scripta Mater., 2018, 153, 19.

[28]

S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, and Y. Yang, Corrosion resistant nanostructured eutectic high entropy alloy, Corros. Sci., 164(2020), art. No. 108315.

[29]

P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution, Corros. Sci., 172(2020), art. No. 108740.

[30]

X. Wang and Y.P. Zhang, Microstructures and corrosion resistance properties of as-cast and homogenized AlFeNiCuCr high entropy alloy, Mater. Chem. Phys., 254(2020), art. No. 123440.

[31]

X.Y. Wang, Q. Liu, Y.B. Huang, L. Xie, Q. Xu, and T.X. Zhao, Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTi x high entropy alloys prepared by laser cladding, Materials, 13(2020), No. 10, art. No. 2209.

[32]

H. Cheng, Y.C. Lin, D.G. He, Y.L. Qiu, J.C. Zhu, and M.S. Chen, Influences of stress-aging on the precipitation behavior of δ phase (Ni3Nb) in a nickel-based superalloy, Mater. Des., 197(2021), art. No. 109256.

[33]

J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, and J.Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution, J. Alloys Compd., 819(2020), art. No. 152943.

[34]

Nair RB, Arora HS, Grewal HS. Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy. Int. J. Miner. Metall. Mater., 2020, 27(10): 1353.

[35]

Malatji N, Popoola API, Lengopeng T, Pityana S. Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. Int. J. Miner. Metall. Mater., 2020, 27(10): 1332.

[36]

Jiang H, Qiao DX, Jiao WN, Han KM, Lu YP, Liaw PK. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy. J. Mater. Sci. Technol., 2021, 61, 119.

[37]

W.Y. Zhang, D.S. Yan, W.J. Lu, and Z.M. Li, Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy, J. Alloys Compd., 831(2020), art. No. 154799.

[38]

H. Ma and C.H. Shek, Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, J. Alloys Compd., 827(2020), art. No. 154159.

[39]

Y. Dong, Z.Q. Yao, X. Huang, F.M. Du, C.Q. Li, A.F. Chen, F. Wu, Y.Q. Cheng, and Z.R. Zhang, Microstructure and mechanical properties of AlCo xCrFeNi3−x eutectic high-entropy-alloy system, J. Alloys Compd., 823(2020), art. No. 153886.

[40]

Q.Q. Wei, G.Q. Luo, J. Zhang, P.G. Chen, Q. Shen, and L.M. Zhang, Effect of raw material forms on the microstructure and mechanical properties of MoNbRe0.5TaW high-entropy alloy, Mater. Sci. Eng. A, 794(2020), art. No. 139632.

[41]

Z. Wang, C. Wang, Y.L. Zhao, T.H. Huang, C.L. Li, J.J. Kai, C.T. Liu, and C.H. Hsueh, Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films, Vacuum, 179(2020), art. No. 109553.

[42]

Zhang M, Hou JX, Yang HJ, Tan YQ, Wang XJ, Shi XH, Guo RP, Qiao JW. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1341.

[43]

M. Kang, K.R. Lim, J.W. Won, K.S. Lee, and Y.S. Na, Al-Ti-containing lightweight high-entropy alloys for intermediate temperature applications, Entropy, 20(2018), No. 5, art. No. 355.

[44]

Kai W, Chien FC, Cheng FP, Huang RT, Kai JJ, Liu CT. The corrosion of an equimolar FeCoNiCrMn high-entropy alloy in various CO2/CO mixed gases at 700 and 950°C. Corros. Sci., 2019, 153, 150.

[45]

W. Kai, F.P. Cheng, F.C. Chien, Y.R. Lin, D. Chen, J.J. Kai, C.T. Liu, and C.J. Wang, The oxidation behavior of a Ni2Fe-CoCrAl0.5 high-entropy superalloy in O2-containing environments, Corros. Sci., 158(2019), art. No. 108093.

[46]

H. Shi, C.C. Tang, A. Jianu, R. Fetzer, A. Weisenburger, M. Steinbrueck, M. Grosse, R. Stieglitz, and G. Müller, Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200°C, Corros. Sci., 170(2020), art. No. 108654.

[47]

Kai W, Cheng FP, Liao CY, Li CC, Huang RT, Kai JJ. The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys. Mater. Chem. Phys., 2018, 210, 362.

[48]

W. Kai, F.P. Cheng, Y.R. Lin, C.W. Chuang, R.T. Huang, D. Chen, J.J. Kai, C.T. Liu, and C.J. Wang, The oxidation behavior of Ni2FeCoCrAl x high-entropy alloys in dry air, J. Alloys Compd., 836(2020), art. No. 155518.

[49]

D. Huang, J.S. Lu, Y.X. Zhuang, C.X. Tian, and Y.B. Li, The role of Nb on the high temperature oxidation behavior of CoCrFeMnNb xNi high-entropy alloys, Corros. Sci., 158(2019), art. No. 108088.

[50]

Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys., 2012, 132(2–3): 233.

[51]

Gorr B, Azim M, Christ HJ, Mueller T, Schliephake D, Heilmaier M. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd., 2015, 624, 270.

[52]

Pacheco V, Lindwall G, Karlsson D, Cedervall J, Fritze S, Ek G, Berastegui P, Sahlberg M, Jansson U. Thermal stability of the HfNbTiVZr high-entropy alloy. Inorg. Chem., 2019, 58(1): 811.

[53]

Raju CVS, Venugopal D, Srikanth PR, Lokeshwaran K, Srinivas M, Chary CJ, Kumar AA. Effect of aluminum addition on the properties of CoCuFeNiTi high entropy alloys. Mater. Today: Proc., 2018, 5(13): 26823

[54]

Tsai CW, Tsai MH, Yeh JW, Yang CC. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J. Alloys Compd., 2010, 490(1–2): 160.

[55]

S.F. Ge, H.M. Fu, L. Zhang, H.H. Mao, H. Li, A.M. Wang, W.R. Li, and H.F. Zhang, Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy, Mater. Sci. Eng. A, 784(2020), art. No. 139275.

[56]

Liu YY, Chen Z, Shi JC, Wang ZY, Zhang JY. The effect of Al content on microstructures and comprehensive properties in ALxCoCrCuFeNi high entropy alloys. Vacuum, 2019, 161, 143.

[57]

Y. Cui, J.Q. Shen, S.M. Manladan, K.P. Geng, and S.S. Hu, Wear resistance of FeCoCrNiMnAl x high-entropy alloy coatings at high temperature, Appl. Surf. Sci., 512(2020), art. No. 145736.

[58]

S.A. Uporov, R.E. Ryltsev, V.A. Bykov, S.K. Estemirova, and D.A. Zamyatin, Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy, J. Alloys Compd., 820(2020), art. No. 153228.

[59]

J. Lu, Y. Chen, H. Zhang, L.M. He, R.D. Mu, Z.Y. Shen, X.F. Zhao, and F.W. Guo, Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200°C, Corros. Sci., 174(2020), art. No. 108803.

[60]

J. Lu, Y. Chen, H. Zhang, L. Li, L.M. Fu, X.F. Zhao, F.W. Guo, and P. Xiao, Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy, Corros. Sci., 170(2020), art. No. 108691.

[61]

Z.Y. Rao, X. Wang, Q.J. Wang, T. Liu, X.H. Chen, L. Wang, and X.D. Hui, Microstructure, mechanical properties, and oxidation behavior of Al xCr0.4CuFe0.4MnNi high entropy alloys, Adv. Eng. Mater., 19(2017), No. 5, art. No. 1600726.

[62]

Y.C. Cai, L.S. Zhu, Y. Cui, K.P. Geng, S.M. Manladan, and Z. Luo, High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings, Mater. Res. Express, 6(2019), No. 12, art. No. 126552.

[63]

Karpets MV, Gorban VF, Rokitska OA, Krapivka MO, Makarenko ES, Samelyuk AV. Features of high-temperature oxidation of high-entropy AlCrFe3CoNiCu alloy. Powder Metall. Met. Ceram., 2018, 57(3–4): 221.

[64]

S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

[65]

Butler TM, Weaver ML. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd., 2016, 674, 229.

[66]

Y.Y. Liu, Z. Chen, Y.Z. Chen, J.C. Shi, Z.Y. Wang, S. Wang, and F. Liu, Effect of Al content on high temperature oxidation resistance of Al xCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2), Vacuum, 169(2019), art. No. 108837.

[67]

N.Y. Bao, J. Zuo, Z.Y. Du, M.L. Yang, G. Jiang, and L. Zhang, Computational characterization of the structural and mechanical properties of Al xCoCrFeNiTi1−x high entropy alloys, Mater. Res. Express, 6(2019), No. 9, art. No. 096519.

[68]

A. Mohanty, J.K. Sampreeth, O. Bembalge, J.Y. Hascoet, S. Marya, R.J. Immanuel, and S.K. Panigrahi, High temperature oxidation study of direct laser deposited Al XCoCrFeNi (X=0.3,0.7) high entropy alloys, Surf. Coat. Technol., 380(2019), art. No. 125028.

[69]

F.X. Ye, Z.P. Jiao, S. Yan, L. Guo, L.Z. Feng, and J.X. Yu, Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al xCoCrFeMnNi high-entropy alloy cladding layer, Vacuum, 174(2020), art. No. 109178.

[70]

Li LC, Li MX, Liu M, Sun BY, Wang C, Huo JT, Wang WH, Liu YH. Enhanced oxidation resistance of MoTaTiCrAl high entropy alloys by removal of Al. Sci. China Mater., 2021, 64(1): 223.

[71]

Erdogan A, Doleker KM, Zeytin S. Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys. JOM, 2019, 71(10): 3499.

[72]

Ham GS, Kim YK, Na YS, Lee KA. Effect of Ti addition on the microstructure and high-temperature oxidation property of AlCoCrFeNi high-entropy alloy. Met. Mater. Int., 2021, 27(1): 156.

[73]

Qin QD, Qu JB, Hu YE, Wu YJ, Su XD. Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy. Int. J. Miner. Metall. Mater., 2018, 25(11): 1286.

[74]

Dabrowa J, Cieslak G, Stygar M, Mroczka K, Berent K, Kulik T, Danielewski M. Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x=0; 0.5; 1). Intermetallics, 2017, 84, 52.

[75]

Chang F, Cai BJ, Zhang C, Huang B, Li S, Dai PQ. Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding. Surf. Coat. Technol., 2019, 359, 132.

[76]

Chang YJ, Yeh AC. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J. Alloys Compd., 2015, 653, 379.

[77]

Kai W, Li CC, Cheng FP, Chu KP, Huang RT, Tsay LW, Kai JJ. Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900°C. Corros. Sci., 2017, 121, 116.

[78]

Laplanche G, Volkert UF, Eggeler G, George EP. Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid Met., 2016, 85(5–6): 629.

[79]

Gorr B, Mueller F, Christ HJ, Mueller T, Chen H, Kauffmann A, Heilmaier M. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition. J. Alloys Compd., 2016, 688, 468.

[80]

S. Shajahan, A. Kumar, M. Chopkar, and A. Basu, Oxidation study of CoCrCuFeNiSi x high entropy alloys, Mater. Res. Express, 7(2020), No. 1, art. No. 016532.

[81]

Müller F, Gorr B, Christ HJ, Chen H, Kauffmann A, Heilmaier M. Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al. Mater. High Temp., 2018, 35(1–3): 168.

[82]

Wang S, Wu Y, Ni CS, Niu Y. The effect of Si additions on the high temperature oxidation of a ternary Ni-10Cr-4Al alloy in 1 atm O2 at 1100°C. Corros. Sci., 2009, 51(3): 511.

[83]

J.J. Yang, C.M. Kuo, P.T. Lin, H.C. Liu, C.Y. Huang, H.W. Yen, and C.W. Tsai, Improvement in oxidation behavior of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy superalloys by minor Nb addition, J. Alloys Compd., 825(2020), art. No. 153983.

[84]

Sheikh S, Bijaksana MK, Motallebzadeh A, Shafeie S, Lozinko A, Gan L, Tsao TK, Klement U, Canadinc D, Murakami H, Guo S. Accelerated oxidation in ductile refractory high-entropy alloys. Intermetallics, 2018, 97, 58.

[85]

Cao YK, Liu Y, Liu B, Zhang WD, Wang JW, Du M. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys. Trans. Nonferrous Met. Soc. China, 2019, 29(7): 1476.

[86]

O.A. Waseem and H.J. Ryu, Combinatorial synthesis and analysis of Al xTa yV z-Cr20Mo20Nb20 Ti20Zr10 and Al10CrMo xN-bTiZr10 refractory high-entropy alloys: Oxidation behavior, J. Alloys Compd., 828(2020), art. No. 154427.

[87]

B. Gorr, F. Müller, S. Schellert, H.J. Christ, H. Chen, A. Kauffmann, and M. Heilmaier, A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures, Corros. Sci., 166(2020), art. No. 108475.

[88]

F. Müller, B. Gorr, H.J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, and M. Heilmaier, On the oxidation mechanism of refractory high entropy alloys, Corros. Sci., 159(2019), art. No. 108161.

[89]

K.C. Lo, Y.J. Chang, H. Murakami, J.W. Yeh, and A.C. Yeh, An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide, Sci. Rep., 9(2019), art. No. 7266.

[90]

Y.X. Guo, H.L. Wang, and Q.B. Liu, Microstructure evolution and strengthening mechanism of laser-cladding MoFe x-CrTiWAlNb y refractory high-entropy alloy coatings, J. Alloys Compd., 834(2020), art. No. 155147.

[91]

Hou LL, Hui JT, Yao YH, Chen J, Liu JN. Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting. Vacuum, 2019, 164, 212.

[92]

V. Shivam, Y. Shadangi, J. Basu, and N.K. Mukhopadhyay, Evolution of phases, hardness and magnetic properties of Al-CoCrFeNi high entropy alloy processed by mechanical alloying, J. Alloys Compd., 832(2020), art. No. 154826.

[93]

Oleszak D, Antolak-Dudka A, Kulik T. High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater. Lett., 2018, 232, 160.

[94]

Gedda H, Kaplan A, Powell J. Melt-solid interactions in laser cladding and laser casting. Metall. Mater. Trans. B, 2005, 36(5): 683.

[95]

Lai CH, Lin SJ, Yeh JW, Chang SY. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol., 2006, 201(6): 3275.

[96]

Y.Z. Shi, B. Yang, P.D. Rack, S.F. Guo, P.K. Liaw, and Y. Zhao, High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al x(CoCrFeNi)100−x combinatorial high-entropy alloys, Mater. Des., 195(2020), art. No. 109018.

[97]

S. Shukla, T.H. Wang, M. Frank, P. Agrawal, S. Sinha, R.A. Mirshams, and R.S. Mishra, Friction stir gradient alloying: A novel solid-state high throughput screening technique for high entropy alloys, Mater. Today Commun., 23(2020), art. No. 100869.

[98]

Xu YQ, Bu YQ, Liu JB, Wang HT. In-situ high throughput synthesis of high-entropy alloys. Scripta Mater., 2019, 160, 44.

[99]

Li M, Gazquez J, Borisevich A, Mishra R, Flores KM. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics, 2018, 95, 110.

[100]

Gao XY, Lu YZ. Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater. Lett., 2019, 236, 77.

[101]

Hong Y, Kivy MB, Zaeem MA. Competition between formation of Al2O3 and Cr2O3 in oxidation of Al0.3CoCrCuF-eNi high entropy alloy: A first-principles study. Scripta Mater., 2019, 168, 139.

[102]

Barin I. Thermochemical Data for Pure Substances, 1995, 3rd ed. Weinheim, VCH Verlagsgesellschaft mbH

[103]

Kai W, Li CC, Cheng FP, Chu KP, Huang RT, Tsay LW, Kai JJ. The oxidation behavior of an equimolar Fe-CoNiCrMn high-entropy alloy at 950°C in various oxygen-containing atmospheres. Corros. Sci., 2016, 108, 209.

[104]

Lobnig RE, Schmidt HP, Hennesen K, Grabke HJ. Diffusion of cations in chromia layers grown on iron-base alloys. Oxid. Met., 1992, 37(1–2): 81.

[105]

R.X. Wang, Y. Tang, S. Li, Y.L. Ai, Y.Y. Li, B. Xiao, L.A. Zhu, X.Y. Liu, and S.X. Bai, Effect of lattice distortion on the diffusion behavior of high-entropy alloys, J. Alloys Compd., 825(2020), art. No. 154099.

[106]

Tong Y, Zhao SJ, Bei HB, Egami T, Zhang YW, Zhang FX. Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys. Acta Mater., 2020, 183, 172.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/