A review of the synthesis and application of zeolites from coal-based solid wastes

Xiaoyu Zhang , Chunquan Li , Shuilin Zheng , Yonghao Di , Zhiming Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 1 -21.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 1 -21. DOI: 10.1007/s12613-021-2256-8
Invited Review

A review of the synthesis and application of zeolites from coal-based solid wastes

Author information +
History +
PDF

Abstract

Zeolite derived from coal-based solid wastes (coal gangue and coal fly ash) can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization. In this paper, the physicochemical properties of coal gangue and coal fly ash are introduced. The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced. The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized. Furthermore, the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated. Finally, we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites. In addition, more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal.

Keywords

coal-based solid waste / coal fly ash / coal gangue / zeolite

Cite this article

Download citation ▾
Xiaoyu Zhang, Chunquan Li, Shuilin Zheng, Yonghao Di, Zhiming Sun. A review of the synthesis and application of zeolites from coal-based solid wastes. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 1-21 DOI:10.1007/s12613-021-2256-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BP p.l.c., Statistical Review of World Energy 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

[2]

Wang GF, Xu YX, Ren HW. Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects. Int. J. Min. Sci. Technol., 2019, 29(2): 161.

[3]

BP p.l.c., BP Energy Outlook 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-fuel/coal.html

[4]

J.Y. Li and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Cleaner Prod., 239(2019), art. No. 117946.

[5]

Yao ZT, Xia MS, Sarker PK, Chen T. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel, 2014, 120, 74.

[6]

Sibanda V, Ndlovu S, Dombo G, Shemi A, Rampou M. Towards the utilization of fly ash as a feedstock for smelter grade alumina production: A review of the developments. J. Sustainable Metall., 2016, 2(2): 167.

[7]

Dong YB, Liu Y, Lin H. Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes. Int. J. Miner. Metall. Mater., 2018, 25(8): 861.

[8]

Mushtaq F, Zahid M, Bhatti IA, Nasir S, Hussain T. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manage., 2019, 240, 27.

[9]

M. Li, J.X. Zhang, A.L. Li, and N. Zhou, Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control, J. Cleaner Prod., 254(2020), art. No. 120113.

[10]

Gao YC, Jiang JG, Meng Y, Aihemaiti A, Ju TY, Chen XJ, Yan F. A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming. Renew. Energy, 2020, 149, 786.

[11]

Yoldi M, Fuentes-Ordoñez EG, Korili SA, Gil A. Zeolite synthesis from industrial wastes. Microporous Mesoporous Mater., 2019, 287, 183.

[12]

Bu NJ, Liu XM, Song SL, Liu JH, Yang Q, Li R, Zheng F, Yan LH, Zhen Q, Zhang JF. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution. Adv. Powder Technol., 2020, 31(7): 2699.

[13]

He XP, Yao B, Xia Y, Huang H, Gan YP, Zhang WK. Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water. Powder Technol., 2020, 367, 40.

[14]

Belviso C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci., 2018, 65, 109.

[15]

Cardoso AM, Paprocki A, Ferret LS, Azevedo CMN, Pires M. Synthesis of zeolite Na—P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel, 2015, 139, 59.

[16]

Belviso C. Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time?. Ultrason. Sonochem., 2018, 43, 9.

[17]

G.Y. Yao, J.J. Lei, X.Y. Zhang, Z.M. Sun, and S.L. Zheng, One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite, Materials, 11(2018), No. 6, art. No. 906.

[18]

Li XB, Ye JJ, Liu ZH, Qiu YQ, Li LJ, Mao S, Wang XC, Zhang Q. Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution. J. Cent. South Univ., 2018, 25(1): 9.

[19]

Xu SQ, Pan DH, Xiao GM. Enhanced HMF yield from glucose with H—ZSM-5 catalyst in water-tetrahydrofuran/2-butanol/2-methyltetrahydrofuran biphasic systems. J. Cent. South Univ., 2019, 26(11): 2974.

[20]

Erdem E, Karapinar N, Donat R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci., 2004, 280(2): 309.

[21]

Yao GY, Lei JJ, Zhang WZ, Yu CH, Sun ZM, Zheng SL, Komarneni S. Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environ. Sci. Pollut. Res., 2019, 26(3): 2782.

[22]

Ren M, Zhang CY, Wang YL, Cai JJ. Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors. Int. J. Miner. Metall. Mater., 2018, 25(12): 1482.

[23]

Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures, Structure Commission of the International Zeolite Association, Chicago [2020-11-10]. http://asia.izastructure.org/IZA-SC/ftc_table.php

[24]

Ahmaruzzaman M. A review on the utilization of fly ash. Prog. Energy Combust. Sci., 2010, 36(3): 327.

[25]

Chen JL, Lu XW. Synthesis and characterization of zeolites NaA and NaX from coal gangue. J. Mater. Cycles Waste Manage., 2018, 20(1): 489.

[26]

Qian TT, Li JH. Synthesis of Na—A zeolite from coal gangue with the in situ crystallization technique. Adv. Powder Technol., 2015, 26(1): 98.

[27]

Zhu JM, Guo SH, Li XH. Facile preparation of a SiO2—Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption. Rsc Adv., 2015, 5(125): 103656.

[28]

Guo YX, Yan KZ, Cui L, Cheng FQ, Lou HH. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction. Int. J. Miner. Process., 2014, 131, 51.

[29]

Bukhari SS, Behin J, Kazemian H, Rohani S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel, 2015, 140, 250.

[30]

Chelgani SC. Exploring relationships of gross calorific value and valuable elements with conventional coal properties for North Korean coals. Int. J. Min. Sci. Technol., 2019, 29(6): 867.

[31]

Kunecki P, Panek R, Wdowin M, Franus W. Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. Int. J. Miner. Process., 2017, 166, 69.

[32]

Yang T, Han CY, Liu H, Yang L, Liu DK, Tang J, Luo YM. Synthesis of Na—X zeolite from low aluminum coal fly ash: Characterization and high efficient As(V) removal. Adv. Powder Technol., 2019, 30(1): 199.

[33]

Molina A, Poole C. A comparative study using two methods to produce zeolites from fly ash. Miner. Eng., 2004, 17(2): 167.

[34]

Xiao M, Hu XJ, Gong Y, Gao D, Zhang P, Liu QX, Liu Y, Wang MC. Solid transformation synthesis of zeolites from fly ash. RSC Adv., 2015, 5(122): 100743.

[35]

Javadian H, Ghorbani F, Tayebi HA, Asl SH. Study of the adsorption of Cd(II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arab. J. Chem., 2015, 8(6): 837.

[36]

Ojha K, Pradhan NC, Samanta AN. Zeolite from fly ash: Synthesis and characterization. Bull. Mater. Sci., 2004, 27(6): 555.

[37]

Monzón JD, Pereyra AM, Conconi MS, Basaldella EI. Phase transformations during the zeolitization of fly ashes. J. Environ. Chem. Eng., 2017, 5(2): 1548.

[38]

Guo YX, Yan KZ, Cui L, Cheng FQ. Improved extraction of alumina from coal gangue by surface mechanically grinding modification. Powder Technol., 2016, 302, 33.

[39]

Zhang LJ, He Y, P, Peng JH, Li SW, Chen KH, Yin SH, Zhang LB. Comparison of microwave and conventional heating routes for kaolin thermal activation. J. Cent. South Univ., 2020, 27(9): 2494.

[40]

Sivalingam S, Sen S. Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl. Surf. Sci., 2018, 455, 903.

[41]

Panitchakarn P, Laosiripojana N, Viriya-Umpikul N, Pavasant P. Synthesis of high-purity Na—A and Na—X zeolite from coal fly ash. J. Air Waste Manage. Assoc., 2014, 64(5): 586.

[42]

Querol X, Moreno N, Umaña J C, Alastuey A, Hernández E, López-Soler A, Plana F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol., 2002, 50(1–4): 413.

[43]

LaRosa JL, Kwan S, Grutzeck MW. Zeolite formation in Class F fly ash blended cement pastes. J. Am. Ceram. Soc., 1992, 75(6): 1574.

[44]

Mondragon F, Rincon F, Sierra L, Escobar J, Ramirez J, Fernandez J. New perspectives for coal ash utilization: Synthesis of zeolitic materials. Fuel, 1990, 69(2): 263.

[45]

Steenbruggen G, Hollman GG. The synthesis of zeolites from fly ash and the properties of the zeolite products. J. Geochem. Explor., 1998, 62(1–3): 305.

[46]

Tanaka H, Sakai Y, Hino R. Formation of Na—A and —X zeolites from waste solutions in conversion of coal fly ash to zeolites. Mater. Res. Bull., 2002, 37(11): 1873.

[47]

Z. Liu, S.Q. Li, L. Li, J.X. Wang, Y. Zhou, and D.M. Wang, One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method, Fuel, 257(2019), art. No. 116043.

[48]

Liu Y, Wang GD, Wang L, Li XL, Luo Q, Na P. Zeolite P synthesis based on fly ash and its removal of Cu(II) and Ni(II) ions. Chin. J. Chem. Eng., 2019, 27(2): 341.

[49]

Hu XS, Bai J, Wang JZ, Li CP, Xu W. Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties. RSC Adv., 2015, 5(4): 2968.

[50]

J.M. Zhou, F. Zheng, H. Li, J. Wang, N.J. Bu, P.F. Hu, J.M. Gao, Q. Zhen, S. Bashir, and J.L. Liu, Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance, Chem. Eng. J., 381(2020), art. No. 122698.

[51]

Izidoro JDC, Fungaro DA, dos Santos FS, Wang SB. Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Process. Technol., 2012, 97, 38.

[52]

Szala B, Bajda T, Matusik J, Zięba K, Kijak B. BTX sorption on Na—P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous Mesoporous Mater., 2015, 202, 115.

[53]

Inada M, Eguchi Y, Enomoto N, Hojo J. Synthesis of zeolite from coal fly ashes with different silica—alumina composition. Fuel, 2005, 84(2–3): 299.

[54]

Ríos CA, Williams RCD, Roberts CL. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel, 2009, 88(8): 1403.

[55]

Shoumkova A, Stoyanova V. Zeolites formation by hydrothermal alkali activation of coal fly ash from thermal power station “Maritsa 3”, Bulgaria. Fuel, 2013, 103, 533.

[56]

Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. J. Hazard. Mater., 2010, 173(1–3): 581.

[57]

Xie J, Wang Z, Wu DY, Kong HN. Synthesis and properties of zeolite/hydrated iron oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water. Fuel, 2014, 116, 71.

[58]

Murayama N, Takahashi T, Shuku K, Lee HH, Shibata J. Effect of reaction temperature on hydrothermal syntheses of potassium type zeolites from coal fly ash. Int. J. Miner. Process., 2008, 87(3–4): 129.

[59]

Wang JC, Li DK, Ju FL, Han LN, Chang LP, Bao WR. Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas. Fuel Process. Technol., 2015, 136, 96.

[60]

Grela A, Hebda M, Lach M, Mikula J. Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash. Microporous Mesoporous Mater., 2016, 220, 155.

[61]

Gross-Lorgouilloux M, Soulard M, Caullet P, Patarin J, Moleiro E, Saude I. Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: Influence of additional silica. Microporous Mesoporous Mater., 2010, 127(1–2): 41.

[62]

Gross-Lorgouilloux M, Caullet P, Soulard M, Patarin J, Moleiro E, Saude I. Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions. Mechanisms of crystallisation. Microporous Mesoporous Mater., 2010, 131(1–3): 407.

[63]

Y. Kobayashi, F. Ogata, T. Nakamura, and N. Kawasaki, Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal, J. Environ. Chem. Eng., 8(2020), No. 2, art. No. 103687.

[64]

Zhou L, Chen YL, Zhang XH, Tian FM, Zu ZN. Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds. Mater. Lett., 2014, 119, 140.

[65]

Ji YY, Wang YQ, Xie B, Xiao FS. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites. Comments Inorg. Chem., 2016, 36(1): 1.

[66]

Han JF, Jin XT, Song CF, Bi YL, Liu QL, Liu CX, Ji N, Lu XB, Ma DG, Li ZG. Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue. Green Chem., 2020, 22(1): 219.

[67]

Liu MM, Hou L, Xi BD, Zhao Y, Xia XF. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Appl. Surf. Sci., 2013, 273, 706.

[68]

Chen YG, Cong SL, Wang QQ, Han HJ, Lu J, Kang Y, Kang W, Wang HY, Han SY, Song H, Zhang JJ. Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH)3 extracted from fly ash as an aluminum source. J. Hazard. Mater., 2018, 349, 18.

[69]

Missengue RNM, Losch P, Sedres G, Musyoka NM, Fatoba OO, Louis B, Pale P, Petrik LF. Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst. C. R. Chim., 2017, 20(1): 78.

[70]

X.Y. Ren, S.J. Liu, R.Y. Qu, L.F. Xiao, P. Hu, H. Song, W.H. Wu, C.H. Zheng, X.C. Wu, and X. Gao, Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption, Microporous Mesoporous Mater., 295(2020), art. No. 109940.

[71]

Shigemoto N, Hayashi H, Miyaura K. Selective formation of Na—X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci., 1993, 28(17): 4781.

[72]

Fotovat F, Kazemian H, Kazemeini M. Synthesis of Na—A and faujasitic zeolites from high silicon fly ash. Mater. Res. Bull., 2009, 44(4): 913.

[73]

Kazemian H, Naghdali Z, Ghaffari Kashani T, Farhadi F. Conversion of high silicon fly ash to Na—P1 zeolite: Alkaline fusion followed by hydrothermal crystallization. Adv. Powder Technol., 2010, 21(3): 279.

[74]

Medina A, Gamero P, Almanza JM, Vargas A, Montoya A, Vargas G, Izquierdo M. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic(V) adsorption. J. Hazard. Mater., 2010, 181(1–3): 91.

[75]

Ge QL, Moeen M, Tian Q, Xu JJ, Feng KQ. Highly effective removal of Pb2+ in aqueous solution by Na—X zeolite derived from coal gangue. Environ. Sci. Pollut. Res., 2020, 27(7): 7398.

[76]

Belviso C, Cavalcante F, Di Gennaro S, Lettino A, Palma A, Ragone P, Fiore S. Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite. J. Environ. Manage., 2014, 137, 16.

[77]

Belviso C, Giannossa LC, Huertas FJ, Lettino A, Mangone A, Fiore S. Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous Mesoporous Mater., 2015, 212, 35.

[78]

I.V. Joseph, L. Tosheva, and A.M. Doyle, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8(2020), No. 4, art. No. 103895.

[79]

G. Verrecchia, L. Cafiero, B. de Caprariis, A. Dell’Era, I. Pettiti, R. Tuffi, and M. Scarsella, Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption, Fuel, 276(2020), art. No. 118041.

[80]

Yang LY, Qian XM, Yuan P, Bai H, Miki T, Men FX, Li H, Nagasaka T. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod., 2019, 212, 250.

[81]

Izidoro JDC, Fungaro DA, Abbott JE, Wang SB. Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel, 2013, 103, 827.

[82]

Jha VK, Nagae M, Matsuda M, Miyake M. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems. J. Environ. Manage., 2009, 90(8): 2507.

[83]

Chen JL, Lu XW. Equilibrium and kinetics studies of Cd(II) sorption on zeolite NaX synthesized from coal gangue. J. Water Reuse Desalin., 2018, 8(1): 94.

[84]

Yao ZT, Xia MS, Ye Y, Zhang L. Synthesis of zeolite Li—ABW from fly ash by fusion method. J. Hazard. Mater., 2009, 170(2–3): 639.

[85]

Berkgaut V, Singer A. High capacity cation exchanger by hydrothermal zeolitization of coal fly ash. Appl. Clay Sci., 1996, 10(5): 369.

[86]

Musyoka NM, Petrik L, Hums E. Synthesis of zeolite A, X and P from a South African coal fly ash. Adv. Mater. Res., 2012, 512–515, 1757.

[87]

Jusoh N, Yeong YF, Mohamad M, Lau KK, Shariff A M. Rapid-synthesis of zeolite T via sonochemical-assisted hydrothermal growth method. Ultrason. Sonochem., 2017, 34, 273.

[88]

J.F. Han, Y. Ha, M.Y. Guo, P.P. Zhao, Q.L. Liu, C.X. Liu, C.F. Song, N. Ji, X.B. Lu, D.G. Ma, and Z.G. Li, Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method, Ultrason. Sonochem., 59(2019), art. No. 104703.

[89]

Sivalingam S, Sen S. Swift sono-hydrothermal synthesis of pure NaX nanocrystals with improved sorption capacity from industrial resources. Appl. Surf. Sci., 2019, 463, 190.

[90]

Aldahri T, Behin J, Kazemian H, Rohani S. Synthesis of zeolite Na—P from coal fly ash by thermo-sonochemical treatment. Fuel, 2016, 182, 494.

[91]

S. Boycheva, I. Marinov, S. Miteva, and D. Zgureva, Conversion of coal fly ash into nanozeolite Na—X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation, Sustainable Chem. Pharm., 15(2020), art. No. 100217.

[92]

Querol X, Alastuey A, López-Soler A, Plana F, Andrés JM, Juan R, Ferrer P, Ruiz CR. A fast method for recycling fly ash: Microwave-assisted zeolite synthesis. Environ. Sci. Technol., 1997, 31(9): 2527.

[93]

Fukui K, Kanayama K, Yamamoto T, Yoshida H. Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment. Adv. Powder Technol., 2007, 18(4): 381.

[94]

Inada M, Tsujimoto H, Eguchi Y, Enomoto N, Hojo J. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel, 2005, 84(12–13): 1482

[95]

Kim JK, Lee HD. Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. J. Ind. Eng. Chem., 2009, 15(5): 736.

[96]

Hollman GG, Steenbruggen G, Janssen-Jurkovičová M. A two-step process for the synthesis of zeolites from coal fly ash. Fuel, 1999, 78(10): 1225.

[97]

Tanaka H, Eguchi H, Fujimoto S, Hino R. Two-step process for synthesis of a single phase Na—A zeolite from coal fly ash by dialysis. Fuel, 2006, 85(10–11): 1329.

[98]

Wang CF, Li JS, Sun X, Wang LJ, Sun XY. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. J. Environ. Sci., 2009, 21(1): 127.

[99]

Tanaka H, Fujii A, Fujimoto S, Tanaka Y. Microwave-assisted two-step process for the synthesis of a single-phase Na—A zeolite from coal fly ash. Adv. Powder Technol., 2008, 19(1): 83.

[100]

Iqbal A, Sattar H, Haider R, Munir S. Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J. Cleaner Prod., 2019, 219, 258.

[101]

Fallavena VLV, Pires M, Ferrarini SF, Silveira APB. Evaluation of zeolite/backfill blend for acid mine drainage remediation in coal mine. Energy Fuels, 2018, 32(2): 2019.

[102]

El-Naggar MR, El-Kamash AM, El-Dessouky MI, Ghonaim AK. Two-step method for preparation of NaA—X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater., 2008, 154(1–3): 963.

[103]

Bukhari SS, Rohani S, Kazemian H. Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash. Ultrason. Sonochem., 2016, 28, 47.

[104]

Y.N. Zhang, Y.G. Chen, W. Kang, H.J. Han, H. Song, C.L. Zhang, H.Y. Wang, X.Q. Yang, X.Z. Gong, C.X. Zhai, J.T. Deng, and L.L. Ai, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Cleaner Prod., 258(2020), art. No. 120736.

[105]

Park M, Choi CL, Lim WT, Kim MC, Choi J, Heo NH. Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system. Microporous Mesoporous Mater., 2000, 37(1–2): 81.

[106]

Park M, Choi CL, Lim WT, Kim MC, Choi J, Heo NH. Molten-salt method for the synthesis of zeolitic materials: II. Characterization of zeolitic materials. Microporus Mesoporous Mater., 2000, 37(1–2): 91.

[107]

Liu Y, Yan CJ, Zhao JJ, Zhang ZH, Wang HQ, Zhou S, Wu LM. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J. Cleaner Prod., 2018, 202, 11.

[108]

Vempati RK, Borade R, Hegde RS, Komarneni S. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous Mesoporous Mater., 2006, 93(1–3): 134.

[109]

Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater., 2003, 97(1–3): 219.

[110]

Lu XW, Shi DQ, Chen JL. Sorption of Cu2+ and Co2+ using zeolite synthesized from coal gangue: isotherm and kinetic studies. Environ. Earth Sci., 2017, 76(17): 591.

[111]

Sui YM, Wu DY, Zhang DL, Zheng XY, Hu ZB, Kong HN. Factors affecting the sorption of trivalent chromium by zeolite synthesized from coal fly ash. J. Colloid Interface Sci., 2008, 322(1): 13.

[112]

Wu DY, Sui YM, He SB, Wang XZ, Li CJ, Kong HN. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J. Hazard. Mater., 2008, 155(3): 415.

[113]

Nascimento M, Soares PSM, de Souza VP. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel, 2009, 88(9): 1714.

[114]

Apiratikul R, Pavasant P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J., 2008, 144(2): 245.

[115]

Visa M. Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technol., 2016, 294, 338.

[116]

Tauanov Z, Tsakiridis PE, Mikhalovsky SV, Inglezakis VJ. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J. Environ. Manage., 2018, 224, 164.

[117]

T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari, and N.T. Tavengwa, Sulphates removal from AMD using CFA hydrothermally treated zeolites in column studies, Miner. Eng., 141(2019), art. No. 105851.

[118]

Wang CF, Li JS, Wang LJ, Sun XY, Huang JJ. Adsorption of dye from wastewater by zeolites synthesized from fly ash: Kinetic and equilibrium studies. Chin. J. Chem. Eng., 2009, 17(3): 513.

[119]

Visa M, Chelaru AM. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl. Surf. Sci., 2014, 303, 14.

[120]

Atun G, Hisarli G, Kurtoglu AE, Ayar N. A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash. J. Hazard. Mater., 2011, 187(1–3): 562.

[121]

Sivalingam S, Sen S. Efficient removal of textile dye using nanosized fly ash derived zeolite-x: Kinetics and process optimization study. J. Taiwan Inst. Chem. Eng., 2019, 96, 305.

[122]

Murnane JG, Brennan RB, Healy MG, Fenton O. Use of zeolite with alum and polyaluminum chloride amendments to mitigate runoff losses of phosphorus, nitrogen, and suspended solids from agricultural wastes applied to grassed soils. J. Environ. Qual., 2015, 44(5): 1674.

[123]

Ji XD, Zhang ML, Wang YJ, Song YC, Ke YY, Wang YQ. Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions. J. Ind. Eng. Chem., 2015, 22, 1.

[124]

Bandura L, Kołodyńska D, Franus W. Adsorption of BTX from aqueous solutions by Na—P1 zeolite obtained from fly ash. Process. Saf. Environ. Prot., 2017, 109, 214.

[125]

Juan R, Hernández S, Andrés JM, Ruiz C. Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash. J. Hazard. Mater., 2009, 161(2–3): 781.

[126]

Chen XY, Wendell K, Zhu J, Li JL, Yu XX, Zhang ZJ. Synthesis of nano-zeolite from coal fly ash and its potential for nutrient sequestration from anaerobically digested swine wastewater. Bioresour. Technol., 2012, 110, 79.

[127]

Luna Y, Otal E, Vilches LF, Vale J, Querol X, Fernández Pereira C. Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study. Waste Manage., 2007, 27(12): 1877.

[128]

Feng W, Wan ZJ, Daniels J, Li ZK, Xiao GK, Yu JL, Xu D, Guo H, Zhang DK, May EF, Li G. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. J. Cleaner Prod., 2018, 202, 390.

[129]

T.M. Mokgehle, W.M. Gitari, and N.T. Tavengwa, Synthesis of di-carboxylic acid functionalized zeolites from coal fly ash for Cd(II) removal from acid mine drainage using column studies approach, J. Environ. Chem. Eng., 7(2019), No. 6, art. No. 103473.

[130]

G.I. Supelano, J.A. Gómez Cuaspud, L.C. Moreno-Aldana, C. Ortiz, C.A. Trujillo, C.A. Palacio, C.A. Parra Vargas, and J.A. Mejía Gómez, Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue, Fuel, 263(2020), art. No. 116800.

[131]

Lin LD, Lin Y, Li CJ, Wu DY, Kong HN. Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int. J. Miner. Process., 2016, 148, 32.

[132]

Zhang BH, Wu DY, Wang C, He SB, Zhang ZJ, Kong HN. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. J. Environ. Sci., 2007, 19(5): 540.

[133]

D. Wood, S. Shaw, T. Cawte, E. Shanen, and B. van Heyst, An overview of photocatalyst immobilization methods for air pollution remediation, Chem. Eng. J., 391(2020), art. No. 123490.

[134]

Wang YS, Du T, Fang X, Meng D, Li G, Liu LY. Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10. Korean J. Chem. Eng., 2018, 35(8): 1642.

[135]

Muriithi GN, Petrik LF, Doucet FJ. Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. J. CO2 Util., 2020, 36, 220.

[136]

Lee KM, Jo YM. Synthesis of zeolite from waste fly ash for adsorption of CO2. J. Mater. Cycles Waste Manage., 2010, 12(3): 212.

[137]

A. Ściubidło and I. Majchrzak-Kucęba, Exhaust gas purification process using fly ash-based sorbents, Fuel, 258(2019), art. No. 116126.

[138]

Li G, Wang BD, Wang HY, Ma J, Xu WQ, Li YL, Han YF, Sun Q. Fe and/or Mn oxides supported on fly ashderived SBA-15 for low-temperature NH3-SCR. Catal. Commun., 2018, 108, 82.

[139]

Boycheva S, Zgureva D, Václavíková M, Kalvachev Y, Lazarova H, Popova M. Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. J. Hazard. Mater., 2019, 361, 374.

[140]

Popova M, Boycheva S, Lazarova H, Zgureva D, Lázár K, Szegedi Á. VOC oxidation and CO2 adsorption on dual adsorption/catalytic system based on fly ash zeolites. Catal. Today, 2020, 357, 518.

[141]

Li ZY, Ma ZW, van der Kuijp TJ, Yuan ZW, Huang L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ., 2014, 468–469, 843.

[142]

Hamid Y, Tang L, Sohail MI, Cao XR, Hussain B, Aziz MZ, Usman M, He ZL, Yang XE. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ., 2019, 660, 80.

[143]

Querol X, Alastuey A, Moreno N, Alvarez-Ayuso E, García-Sánchez A, Cama J, Ayora C, Simón M. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 2006, 62(2): 171.

[144]

Terzano R, Spagnuolo M, Medici L, Tateo F, Ruggiero P. Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation. Appl. Clay Sci., 2005, 29(2): 99.

[145]

P. Horta-Fraijo, E. Smolentseva, A. Simakov, M. José-Yacaman, and B. Acosta, Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction, Microporous Mesoporous Mater., 312(2021), art. No. 110707.

[146]

N. Czuma, K. Zarębska, M. Motak, M.E. Gálvez, and P. Da Costa, Ni/zeolite X derived from fly ash as catalysts for CO2 methanation, Fuel, 267(2020), art. No. 117139.

[147]

Manique MC, Lacerda LV, Alves AK, Bergmann CP. Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst. Fuel, 2017, 190, 268.

[148]

Musyoka NM, Ren JW, Langmi HW, North BC, Mathe M. A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives. Int. J. Hydrogen Energy, 2015, 40(37): 12705.

[149]

Lim JM, Park J, Park JT, Bae S. Preparation of quasi-solid-state electrolytes using a coal fly ash derived zeolite—X and —A for dye-sensitized solar cells. J. Ind. Eng. Chem., 2019, 71, 378.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/