A review of the synthesis and application of zeolites from coal-based solid wastes
Xiaoyu Zhang , Chunquan Li , Shuilin Zheng , Yonghao Di , Zhiming Sun
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 1 -21.
A review of the synthesis and application of zeolites from coal-based solid wastes
Zeolite derived from coal-based solid wastes (coal gangue and coal fly ash) can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization. In this paper, the physicochemical properties of coal gangue and coal fly ash are introduced. The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced. The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized. Furthermore, the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated. Finally, we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites. In addition, more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal.
coal-based solid waste / coal fly ash / coal gangue / zeolite
| [1] |
BP p.l.c., Statistical Review of World Energy 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html |
| [2] |
|
| [3] |
BP p.l.c., BP Energy Outlook 2020, BP p.l.c., London [2020-11-10]. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-fuel/coal.html |
| [4] |
J.Y. Li and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Cleaner Prod., 239(2019), art. No. 117946. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
M. Li, J.X. Zhang, A.L. Li, and N. Zhou, Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control, J. Cleaner Prod., 254(2020), art. No. 120113. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
G.Y. Yao, J.J. Lei, X.Y. Zhang, Z.M. Sun, and S.L. Zheng, One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite, Materials, 11(2018), No. 6, art. No. 906. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures, Structure Commission of the International Zeolite Association, Chicago [2020-11-10]. http://asia.izastructure.org/IZA-SC/ftc_table.php |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
Z. Liu, S.Q. Li, L. Li, J.X. Wang, Y. Zhou, and D.M. Wang, One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method, Fuel, 257(2019), art. No. 116043. |
| [48] |
|
| [49] |
|
| [50] |
J.M. Zhou, F. Zheng, H. Li, J. Wang, N.J. Bu, P.F. Hu, J.M. Gao, Q. Zhen, S. Bashir, and J.L. Liu, Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance, Chem. Eng. J., 381(2020), art. No. 122698. |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
Y. Kobayashi, F. Ogata, T. Nakamura, and N. Kawasaki, Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal, J. Environ. Chem. Eng., 8(2020), No. 2, art. No. 103687. |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
X.Y. Ren, S.J. Liu, R.Y. Qu, L.F. Xiao, P. Hu, H. Song, W.H. Wu, C.H. Zheng, X.C. Wu, and X. Gao, Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption, Microporous Mesoporous Mater., 295(2020), art. No. 109940. |
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
I.V. Joseph, L. Tosheva, and A.M. Doyle, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8(2020), No. 4, art. No. 103895. |
| [79] |
G. Verrecchia, L. Cafiero, B. de Caprariis, A. Dell’Era, I. Pettiti, R. Tuffi, and M. Scarsella, Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption, Fuel, 276(2020), art. No. 118041. |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
J.F. Han, Y. Ha, M.Y. Guo, P.P. Zhao, Q.L. Liu, C.X. Liu, C.F. Song, N. Ji, X.B. Lu, D.G. Ma, and Z.G. Li, Synthesis of zeolite SSZ-13 from coal gangue via ultrasonic pretreatment combined with hydrothermal growth method, Ultrason. Sonochem., 59(2019), art. No. 104703. |
| [89] |
|
| [90] |
|
| [91] |
S. Boycheva, I. Marinov, S. Miteva, and D. Zgureva, Conversion of coal fly ash into nanozeolite Na—X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation, Sustainable Chem. Pharm., 15(2020), art. No. 100217. |
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
Y.N. Zhang, Y.G. Chen, W. Kang, H.J. Han, H. Song, C.L. Zhang, H.Y. Wang, X.Q. Yang, X.Z. Gong, C.X. Zhai, J.T. Deng, and L.L. Ai, Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment, J. Cleaner Prod., 258(2020), art. No. 120736. |
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
T.M. Mokgehle, H. Richards, L. Chimuka, W.M. Gitari, and N.T. Tavengwa, Sulphates removal from AMD using CFA hydrothermally treated zeolites in column studies, Miner. Eng., 141(2019), art. No. 105851. |
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
T.M. Mokgehle, W.M. Gitari, and N.T. Tavengwa, Synthesis of di-carboxylic acid functionalized zeolites from coal fly ash for Cd(II) removal from acid mine drainage using column studies approach, J. Environ. Chem. Eng., 7(2019), No. 6, art. No. 103473. |
| [130] |
G.I. Supelano, J.A. Gómez Cuaspud, L.C. Moreno-Aldana, C. Ortiz, C.A. Trujillo, C.A. Palacio, C.A. Parra Vargas, and J.A. Mejía Gómez, Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue, Fuel, 263(2020), art. No. 116800. |
| [131] |
|
| [132] |
|
| [133] |
D. Wood, S. Shaw, T. Cawte, E. Shanen, and B. van Heyst, An overview of photocatalyst immobilization methods for air pollution remediation, Chem. Eng. J., 391(2020), art. No. 123490. |
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
A. Ściubidło and I. Majchrzak-Kucęba, Exhaust gas purification process using fly ash-based sorbents, Fuel, 258(2019), art. No. 116126. |
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
P. Horta-Fraijo, E. Smolentseva, A. Simakov, M. José-Yacaman, and B. Acosta, Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction, Microporous Mesoporous Mater., 312(2021), art. No. 110707. |
| [146] |
N. Czuma, K. Zarębska, M. Motak, M.E. Gálvez, and P. Da Costa, Ni/zeolite X derived from fly ash as catalysts for CO2 methanation, Fuel, 267(2020), art. No. 117139. |
| [147] |
|
| [148] |
|
| [149] |
|
/
| 〈 |
|
〉 |