Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al-Mg

Dong Wu , Wenya Li , Qiang Chu , Yangfan Zou , Xichang Liu , Yanjun Gao

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1589 -1595.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1589 -1595. DOI: 10.1007/s12613-021-2254-x
Article

Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al-Mg

Author information +
History +
PDF

Abstract

The bobbin tool friction stir welding process was used to join 6 mm thick 5A06 aluminum alloy plates. Optical microscope was used to characterize the microstructure. The electron backscatter diffraction (EBSD) identified the effect of non-homogeneous microstructure on the tensile properties. It was observed that the grain size in the top of the stir zone (SZ) is smaller than that in the centre region. The lowest ratio of recrystallization and density of the geometrically-necessary dislocations (GNDs) in the SZ was found in the middle near the thermo-mechanically affected zone (TMAZ) being 22% and 1.15 × 10−13 m−2, respectively. The texture strength of the heat-affected zone (HAZ) is the largest, followed by that in the SZ, with the lowest being in the TMAZ. There were additional interfaces developed which contributed to the strengthening mechanism, and their effect on tensile strength was analysed. The tensile tests identified the weakest part in the joint at the interfaces, and the specific reduction value is about 93 MPa.

Keywords

friction stir welding / bobbin-tool / local microstructure / strengthening mechanisms / adjustable-gap

Cite this article

Download citation ▾
Dong Wu, Wenya Li, Qiang Chu, Yangfan Zou, Xichang Liu, Yanjun Gao. Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al-Mg. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1589-1595 DOI:10.1007/s12613-021-2254-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang XX, Ni DR, Xiao BL, Andrä H, Gan WM, Hofmann M, Ma ZY. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction. Acta Mater., 2015, 87, 161.

[2]

Bagheri B, Abbasi M, Abdollahzadeh A. Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study. Int. J. Miner. Metall. Mater., 2021, 28(3): 450.

[3]

Hajizadeh M, Emami S, Saeid T. Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels. Int. J. Miner. Metall. Mater., 2020, 27(11): P1517.

[4]

Fuse K, Badheka V. Bobbin tool friction stir welding: A review. Sci. Technol. Weld. Joining, 2019, 24(4): 277.

[5]

Küçükömeroğlu T, Aktarer SM, İpekoğlu G, Çam G. Microstructure and mechanical properties of friction-stir welded St52 steel joints. Int. J. Miner. Metall. Mater., 2018, 25(12): 1457.

[6]

Zhou L, Li GH, Zha GD, Shu FY, Liu HJ, Feng JC. Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy. Sci. Technol. Weld. Joining, 2018, 23(7): 596.

[7]

Chen J, Fujii H, Sun YF, Morisada Y, Ueji R. Fine grained Mg-3Al-1Zn alloy with randomized texture in the double-sided friction stir welded joints. Mater. Sci. Eng. A, 2013, 580, 83.

[8]

Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Strauss AM. Friction stir welding: Process, automation, and control. J. Manuf. Process., 2014, 16(1): 56.

[9]

Dong JH, Gao C, Lu Y, Han J, Jiao XD, Zhu ZX. Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy. Int. J. Miner. Metall. Mater., 2017, 24(2): 171.

[10]

Thomas WM, Wiesner CS, Marks DJ, Staines DG. Conventional and bobbin friction stir welding of 12% chromium alloy steel using composite refractory tool materials. Sci. Technol. Weld. Joining, 2009, 14(3): 247.

[11]

Wang FF, Li WY, Shen J, Hu SY, dos Santos JF. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy. Mater. Des., 2015, 86, 933.

[12]

Cui GR, Ma ZY, Li SX. The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al-Mg alloy. Acta Mater., 2009, 57(19): 5718.

[13]

Xu WF, Luo YX, Fu MW. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy. Mater. Charact., 2018, 138, 48.

[14]

Baghdadi AH, Rajabi A, Selamat NFM, Sajuri Z, Omar MZ. Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061. Mater. Sci. Eng. A, 2019, 754, 728.

[15]

Wang GQ, Zhao YH, Tang YY. Research progress of bobbin tool friction stir welding of aluminum alloys: A review. Acta Metall. Sinica Engl. Lett., 2020, 33(1): 13.

[16]

Lafly AL, Alléhaux D, Marie F, Dalle Donne C, Biallas G. Microstructure and mechanical properties of the aluminium alloy 6056 welded by friction stir welding techniques. Weld. World, 2006, 50(11–12): 98.

[17]

Yang C, Ni DR, Xue P, Xiao BL, Wang W, Wang KS, Ma ZY. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Mater. Charact., 2018, 145, 20.

[18]

Xu WF, Luo YX, Zhang W, Fu MW. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate. J. Mater. Sci. Technol., 2018, 34(1): 173.

[19]

Esmaily M, Mortazavi N, Osikowicz W, Hindsefelt H, Svensson JE, Halvarsson M, Martin J, Johansson LG. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles. Mater. Des., 2016, 108, 114.

[20]

Wu D, Li WY, Gao YJ, Yang J, Wen Q, Vidakis N, Vairis A. Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Mg joints. Int. J. Miner. Metall. Mater., 2021, 28(4): 710.

[21]

Wang FF, Li WY, Shen J, Zhang ZH, Li JL, dos Santos JF. Global and local mechanical properties and microstructure of Bobbin tool friction-stir-welded Al-Li alloy. Sci. Technol. Weld. Joining, 2016, 21(6): 479.

[22]

Benavides S, Li Y, Murr LE, Brown D, McClure JC. Low-temperature friction-stir welding of 2024 aluminum. Scr. Mater., 1999, 41(8): 809.

[23]

Azimzadegan T, Serajzadeh S. An investigation into microstructures and mechanical properties of AA7075-T6 during friction stir welding at relatively high rotational speeds. J. Mater. Eng. Perform., 2010, 19(9): 1256.

[24]

Patel VK, Bhole SD, Chen DL. Influence of ultrasonic spot welding on microstructure in a magnesium alloy. Scr. Mater., 2011, 65(10): 911.

[25]

Badji R, Chauveau T, Bacroix B. Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint. Mater. Sci. Eng. A, 2013, 575, 94.

[26]

Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater., 2011, 59(11): 4653.

[27]

Kapoor R, Kumar N, Mishra RS, Huskamp CS, Sankaran KK. Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy. Mater. Sci. Eng. A, 2010, 527(20): P5246-5254.

[28]

Sidor JJ, Petrov RH, Kestens LAI. Microstructural and texture changes in severely deformed aluminum alloys. Mater. Charact., 2011, 62(2): 228.

[29]

Moradi MM, Aval HJ, Jamaati R, Amirkhanlou S, Ji SX. Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J. Manuf. Process., 2018, 32, 1.

[30]

Shen JJ, Wang FF, Suhuddin UFH, Hu SY, Li WY, Santos JFd. Crystallographic texture in bobbin tool frictionstir-welded aluminum. Metall. Mater. Trans. A, 2015, 46(7): 2809.

[31]

Ma KK, Wen HM, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater., 2014, 62, 141.

[32]

Huskins EL, Cao B, Ramesh KT. Strengthening mechanisms in an Al-Mg alloy. Mater. Sci. Eng. A, 2010, 527(6): 1292.

[33]

Hsu CJ, Chang CY, Kao PW, Ho NJ, Chang CP. Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater., 2006, 54(19): 5241.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/