Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness

Wen-qi Liu , Jun-he Lian

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 854 -866.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 854 -866. DOI: 10.1007/s12613-021-2250-1
Article

Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness

Author information +
History +
PDF

Abstract

This study aims to discover the stress-state dependence of the dynamic strain aging (DSA) effect on the deformation and fracture behavior of high-strength dual-phase (DP) steel at different deformation temperatures (25–400°C) and reveal the damage mechanisms under these various configurations. To achieve different stress states, predesigned specimens with different geometric features were used. Scanning electron microscopy was applied to analyze the fracture modes (e.g., dimple or shear mode) and underlying damage mechanism of the investigated material. DSA is present in this DP steel, showing the Portevin-Le Chatelier (PLC) effect with serrated flow behavior, thermal hardening, and blue brittleness phenomena. Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness. Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness. Accordingly, the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.

Keywords

dynamic strain aging effect / Portevin-Le Chatelier effect / damage mechanism / dimple fracture / shear fracture / dual-phase steel

Cite this article

Download citation ▾
Wen-qi Liu, Jun-he Lian. Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(5): 854-866 DOI:10.1007/s12613-021-2250-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baird JD. Strain aging of steel: A critical review. Iron Steel, 1963, 36, 186

[2]

Keh A, Nakada Y, Leslie W. Dynamic strain aging in iron and steel. Dislocation Dynamics, 1968, New York, Mc Graw-Hill, 381

[3]

Baird JD. The effects of strain-ageing due to interstitial solutes on the mechanical properties of metals. Metall. Rev., 1971, 16(1): 1.

[4]

Leslie WC. Iron and its dilute substitutional solid solutions. Metall. Mater. Trans. B, 1972, 3(1): 5.

[5]

Roberts MJ, Owen WS. Unstable flow in martensite and ferrite. Metall. Trans., 1970, 1, 3203.

[6]

Sleeswyk AW. Slow strain-hardening of ingot iron. Acta Metall., 1958, 6(9): 598.

[7]

Cottrell AH, Bilby BA. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. A, 1949, 62(1): 49.

[8]

Cottrell AH, Jaswon MA, Mott NF. Distribution of solute atoms round a slow dislocation. Proc. R. Soc. London Ser. A, 1949, 199(1056): 104.

[9]

Chatelier APAFL. A phenomenon observed during the tensile test alloys during processing. C. R. Acad. Sci., 1923, 176, 507

[10]

Mima G, Inoko F. A study on the blue-brittle behaviour of a mild steel in torsional deformation. Trans. Jpn. Inst. Met., 1969, 10(3): 227.

[11]

Dolzhenkov IE. Influence of deformation rate on the blue brittleness temperature and dislocation density of carbon steel. Met. Sci. Heat Treat., 1967, 9(6): 423.

[12]

Kim JG, Hong S, Anjabin N, Park BH, Kim SK, Chin KG, Lee S, Kim HS. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing. Mater. Sci. Eng. A, 2015, 633, 136.

[13]

Chen L, Kim HS, Kim SK, De Cooman BC. Localized deformation due to Portevin-LeChatelier effect in 18Mn−0.6C TWIP austenitic steel. ISIJ Int., 2007, 47(12): 1804.

[14]

F.H. Shen, S. Münstermann, and J.H. Lian, An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging, Int. J. Plasticity, 132(2020), art. No. 102747.

[15]

Li XY, Roth CC, Mohr D. Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel. Int. J. Plasticity, 2019, 118, 320.

[16]

Hong SG, Lee SB. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel. J. Nucl. Mater., 2004, 328(2–3): 232.

[17]

Srinivasan VS, Valsan M, Sandhya R, Bhanu Sankara Rao K, Mannan SL, Sastry DH. High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel. Int. J. Fatigue, 1999, 21(1): 11.

[18]

Gupta C, Chakravartty JK, Wadekar SL, Banerjee S. Fracture behaviour in the dynamic strain ageing regime of a martensitic steel. Scripta Mater., 2006, 55(12): 1091.

[19]

Das AR, Chowdhury T, Sivaprasad S, Bar HN, Narasaiah N, Tarafder S. Influence of dynamic strain ageing on fracture behaviour and stretch zone formation of a reactor pressure vessel steel. Int. J. Fract., 2016, 202(1): 79.

[20]

Mohan R, Marschall C. Cracking instabilities in a low-carbon steel susceptible to dynamic strain aging. Acta Mater., 1998, 46(6): 1933.

[21]

Verma P, Sudhakar Rao G, Chellapandi P, Mahobia GS, Chattopadhyay K, Santhi Srinivas NC, Singh V. Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr-1Mo steel. Mater. Sci. Eng. A, 2015, 621, 39.

[22]

Karlsen W, Ivanchenko M, Ehrnstén U, Yagodzinskyy Y, Hänninen H. Microstructural manifestation of dynamic strain aging in AISI 316 stainless steel. J. Nucl. Mater., 2009, 395(1–3): 156.

[23]

Gonzalez BM, Marchi LA, Fonseca EJD, Modenesi PJ, Buono VTL. Measurement of dynamic strain aging in pearlitic steels by tensile test. ISIJ Int., 2003, 43(3): 428.

[24]

Kohandehghan AR, Sadeghi AR, Akhgar JM, Serajzadeh S. Investigation into dynamic strain aging behaviour in high carbon steel. Ironmaking Steelmaking, 2010, 37(2): 155.

[25]

Caillard D, Bonneville J. Dynamic strain aging caused by a new Peierls mechanism at high-temperature in iron. Scripta Mater., 2015, 95, 15.

[26]

Caillard D. Dynamic strain ageing in iron alloys: The shielding effect of carbon. Acta Mater., 2016, 112, 273.

[27]

Soares GC, Queiroz RRU, Santos LA. Effects of dynamic strain aging on strain hardening behavior, dislocation substructure, and fracture morphology in a ferritic stainless steel. Metall. Mater. Trans. A, 2020, 51(2): 725.

[28]

Shahriary MS, Koohbor B, Ahadi K, Ekrami A, Khakian-Qomi M, Izadyar T. The effect of dynamic strain aging on room temperature mechanical properties of high martensite dual phase (HMDP) steel. Mater. Sci. Eng. A, 2012, 550, 325.

[29]

Najam H, Koyama M, Bal B, Akiyama E, Tsuzaki K. Strain rate and hydrogen effects on crack growth from a notch in a Fe-high-Mn steel containing 1.1wt% solute carbon. Int. J. Hydrogen Energy, 2020, 45(1): 1125.

[30]

Srinivas M, Malakondaiah G, Murty KL, Rao PR. Fracture toughness in the dynamic strain ageing regime. Scripta Metall. Mater., 1991, 25(11): 2585.

[31]

Alomari AS, Kumar N, Murty KL. Enhanced ductility in dynamic strain aging regime in a Fe−25Ni−20Cr austenitic stainless steel. Mater. Sci. Eng. A, 2018, 729, 157.

[32]

Lee SJ, Kim J, Kane SN, Cooman BCD. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater., 2011, 59(17): 6809.

[33]

Field DM, Van Aken DC. Dynamic strain aging phenomena and tensile response of medium-Mn TRIP steel. Metall. Mater. Trans. A, 2018, 49(4): 1152.

[34]

Queiroz RRU, Cunha FGG, Gonzalez BM. Study of dynamic strain aging in dual phase steel. Mater. Sci. Eng. A, 2012, 543, 84.

[35]

Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater., 1998, 46(5): 1749.

[36]

Que Z, Seifert HP, Spaetig P, Zhang A, Holzer J, Rao GS, Ritter S. Effect of dynamic strain ageing on environmental degradation of fracture resistance of low-alloy RPV steels in high-temperature water environments. Corros. Sci., 2019, 152, 172.

[37]

Que Z, Seifert HP, Spaetig P, Holzer J, Rao GS, Ritter S, Zhang A. Environmental degradation of fracture resistance in high-temperature water environments of low-alloy reactor pressure vessel steels with high sulphur or phosphorus contents. Corros. Sci., 2019, 154, 191.

[38]

Wu XQ, Kim IS. Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel. Mater. Sci. Eng. A, 2003, 348(1–2): 309.

[39]

Lian JH, Yang HQ, Vajragupta N, Münstermann S, Bleck W. A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale. Comput. Mater. Sci., 2014, 94, 245.

[40]

Wu B, Vajragupta N, Lian J, Hangen U, Wechsuwanrnanee P, Muenstermann S. Prediction of plasticity and damage initiation behaviour of C45E+N steel by micromechanical modelling. Mater. Des., 2017, 121, 154.

[41]

Xie QG, Lian JH, Sidor JJ, Sun FW, Yan XC, Chen CY, Liu TK, Chen WJ, Yang P, An K, Wang YD. Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy. Acta Mater., 2020, 193, 138.

[42]

He JS, Lian JH, Golisch G, He A, Di YD, Münstermann S. Investigation on micromechanism and stress state effects on cleavage fracture of ferritic-pearlitic steel at −196°C. Mater. Sci. Eng. A, 2017, 686, 134.

[43]

Lian JH, Liu PF, Münstermann S. Modeling of damage and failure of dual phase steel in Nakajima test. Key Eng. Mater., 2012, 525–526, 69.

[44]

W.Q. Liu, J.H. Lian, S. Münstermann, C.Y. Zeng, and X.F. Fang, Prediction of crack formation in the progressive folding of square tubes during dynamic axial crushing, Int. J. Mech. Sci., 176(2020), art. No. 105534.

[45]

W.Q. Liu, J.H. Lian, N. Aravas, and S. Münstermann, A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dualphase steel, Int. J. Plast., 126(2020), art. No. 102614.

[46]

J.H. Lian, T. Wierzbicki, J.E. Zhu, and W. Li, Prediction of shear crack formation of lithium-ion batteries under rod indentation: Comparison of seven failure criteria, Eng. Fract. Mech., 217(2019), art. No. 106520.

[47]

Lian JH, Sharaf M, Archie F, Münstermann S. A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets. Int. J. Damage Mech., 2013, 22(2): 188.

[48]

W.Q. Liu, J.H. Lian, and S. Münstermann, Damage mechanism analysis of a high-strength dual-phase steel sheet with optimized fracture samples for various stress states and loading rates, Eng. Fail. Anal., 106(2019), art. No. 104138.

[49]

British Standards Institution, BS EN ISO 6892-1:2016: Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, 2016.

[50]

De Cooman BC. 10 — Phase transformations in high manganese twinning-induced plasticity (TWIP) steels. Phase Transformations Steels, 2012, 2, 295.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/