Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries

Qi Wang , Yue-yong Du , Yan-qing Lai , Fang-yang Liu , Liang-xing Jiang , Ming Jia

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1629 -1635.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1629 -1635. DOI: 10.1007/s12613-021-2249-7
Article

Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries

Author information +
History +
PDF

Abstract

Antimony sulfide (Sb2S3) is a promising anode for lithium-ion batteries due to its high capacity and vast reserves. However, the low electronic conductivity and severe volume change during cycling hinder its commercialization. Herein our work, a three-dimensional (3D) Sb2S3 thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil (SSF) as 3D current collector, and a carbon nanotube interphase was introduced onto the film surface by a simple dropping-heating process to promote the electrochemical performances. This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh·g−1 at 10 C. With carbon nanotubes interphase modified, the Sb2S3 anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles. This work sheds light on the economical preparation and performance optimization of Sb2S3-based anodes.

Keywords

three dimensions / antimony sulfide anode / carbon nanotubes interphase / lithium-ion batteries

Cite this article

Download citation ▾
Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, Ming Jia. Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1629-1635 DOI:10.1007/s12613-021-2249-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hao ML, Li J, Park S, Moura S, Dames C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy, 2018, 3(10): 899.

[2]

Z.D. Lei, Q.S. Yang, Y. Xu, S.Y. Guo, W.W. Sun, H. Liu, L.P. Lv, Y. Zhang, and Y. Wang, Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry, Nat. Commun., 9(2018), art. No. 576.

[3]

M. Ko, S. Chae, J. Ma, N. Kim, H.W. Lee, Y. Cui, and J. Cho, Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries, Nat. Energy, 1(2016), art. No. 16113.

[4]

Hou HS, Jing MJ, Huang ZD, Yang YC, Zhang Y, Chen J, Wu ZB, Ji XB. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(34): 19362.

[5]

Dong SH, Li CX, Ge XL, Li ZQ, Miao XG, Yin LW. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano, 2017, 11(6): 6474.

[6]

S.S. Yao, J. Cui, J.Q. Huang, Z.H. Lu, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan Ul Haq, F. Ciucci, and J.K. Kim, Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance, Adv. Energy Mater., 8(2018), No. 24, art. No. 1800710.

[7]

Luo W, Ao X, Li ZS, Lv L, Li JG, Hong G, Wu QH, Wang CD. Imbedding ultrafine Sb2S3 nanoparticles in meso-porous carbon sphere for high-performance lithium-ion battery. Electrochim. Acta, 2018, 290, 185.

[8]

Yao SS, Cui J, Deng Y, Chong WG, Wu JX, Ihsan-Ul-haq M, Mai YW, Kim JK. Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage. Energy Storage Mater., 2019, 20, 36.

[9]

Prikhodchenko PV, Gun J, Sladkevich S, Mikhaylov AA, Lev O, Tay YY, Batabyal SK, Yu DYW. Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@Graphene for a superior lithium battery anode. Chem. Mater., 2012, 24(24): 4750.

[10]

Zhou XZ, Bai LH, Yan J, He SH, Lei ZQ. Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochim. Acta, 2013, 108, 17.

[11]

D.Y.W. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, and O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nat. Commun., 4(2013), art. No. 2922.

[12]

Nemaga AW, Mallet J, Michel J, Guery C, Molinari M, Morcrette M. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries. J. Power Sources, 2018, 393, 43.

[13]

J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, and J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation, Adv. Mater., 30(2018), No. 6, art. No. 1704337.

[14]

R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949.

[15]

Park H, Um JH, Choi H, Yoon WS, Sung YE, Choe H. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries. Appl. Surf. Sci., 2017, 399, 132.

[16]

R.J. Zou, Z.Y. Zhang, M.F. Yuen, M.L. Sun, J.Q. Hu, C.S. Lee, and W.J. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries, NPG Asia Mater., 7(2015), No. 6, art. No. e195.

[17]

Yuan W, Wang BY, Wu H, Xiang MW, Wang Q, Liu H, Zhang Y, Liu HK, Dou SX. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries. J. Power Sources, 2018, 379, 10.

[18]

Peled E, Patolsky F, Golodnitsky D, Freedman K, Davidi G, Schneier D. Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett., 2015, 15(6): 3907.

[19]

Tao HC, Zhu SC, Xiong LY, Yang XL, Zhang LL. Three-dimensional carbon-coated SnO2/reduced graphene oxide foam as a binder-free anode for high-performance lithiumion batteries. ChemElectroChem, 2016, 3(7): 1063.

[20]

Yang Y, Fan XJ, Casillas G, Peng ZW, Ruan GD, Wang G, Yacaman MJ, Tour JM. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries. ACS Nano, 2014, 8(4): 3939.

[21]

Moitzheim S, Balder JE, Ritasalo R, Ek S, Poodt P, Unnikrishnan S, De Gendt S, Vereecken PM. Toward 3D thin-film batteries: Optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes. ACS Appl. Energy Mater., 2019, 2(3): 1774.

[22]

Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Amorphous Sb2S3 anodes by reactive radio frequency magnetron sputtering for high-performance lithium-ion half/full cells, Energy Technol., 7(2019), No. 11, art. No. 1900928.

[23]

Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater., 2005, 4(5): 366.

[24]

Makreski P, Petruševski G, Ugarković S, Jovanovski G. Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vib. Spectrosc., 2013, 68, 177.

[25]

Makreski P, Jovanovski G, Minceva-Sukarova B, Soptrajanov B, Green A, Engelen B, Grzetic I. Vibrational spectra of M3 IMIIIS3 type synthetic minerals (MI = Tl or Ag and MIII = As or Sb). Vib. Spectrosc., 2004, 35(1–2): 59.

[26]

Kharbish S, Libowitzky E, Beran A. Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur. J. Mineral., 2009, 21(2): 325.

[27]

Li H, Qian K, Qin XY, Liu DQ, Shi RY, Ran AH, Han CP, He YB, Kang FY, Li BH. The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene. J. Power Sources, 2018, 385, 114.

[28]

Parize R, Cossuet T, Chaix-Pluchery O, Roussel H, Appert E, Consonni V. In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction. Mater. Des., 2017, 121, 1.

[29]

Nguyen QH, Choi JS, Lee YC, Kim IT, Hur J. 3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage. J. Ind. Eng. Chem., 2019, 69, 116.

[30]

Q. Li, G.Z. Zhu, Y.H. Zhao, K. Pei, and R.C. Che, NixM-nyCozO nanowire/CNT composite microspheres with 3D interconnected conductive network structure via spray-drying method: A high-capacity and long-cycle-life anode material for lithium-ion batteries, Small, 15(2019), No. 15, art. No. 1900069.

[31]

Zhang HL, Hu CG, Ding Y, Lin Y. Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. J. Alloys Compd., 2015, 625, 90.

[32]

Wang SJ, Liu SS, Li XM, Li C, Zang R, Man ZM, Wu YH, Li PX, Wang GX. SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chem. Eur. J., 2018, 24(15): 3873.

[33]

D.Y.W. Yu, H.E. Hoster, and S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries, Sci. Rep., 4(2015), No. 1, art. No. 4562.

[34]

J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, and X.Y. Wang, Template-free synthesis of Sb2S3 hollow micro-spheres as anode materials for lithium-ion and sodium-ion batteries, Nano-Micro Lett., 10(2018), No. 1, art. No. 12.

[35]

Dong YC, Yang SL, Zhang ZY, Lee JM, Zapien JA. Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10(7): 3159.

[36]

Ren J, Ren RP, Lv YK. A flexible 3D graphene@CNT@ MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem. Eng. J., 2018, 353, 419.

[37]

Dong YR, Jiang H, Deng ZN, Hu YJ, Li CZ. Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem. Eng. J., 2018, 350, 1066.

[38]

Zhu CR, Xia XH, Liu JL, Fan ZX, Chao DL, Zhang H, Fan HJ. TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode. Nano Energy, 2014, 4, 105.

[39]

Tang WJ, Wang XL, Xie D, Xia XH, Gu CD, Tu JP. Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries. J. Mater. Chem. A, 2018, 6(37): 18318.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/