Carbon dot-modified silicon nanoparticles for lithium-ion batteries

Qiao-kun Du , Qing-xia Wu , Hong-xun Wang , Xiang-juan Meng , Ze-kai Ji , Shu Zhao , Wei-wei Zhu , Chuang Liu , Min Ling , Cheng-du Liang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1603 -1610.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1603 -1610. DOI: 10.1007/s12613-020-2247-1
Article

Carbon dot-modified silicon nanoparticles for lithium-ion batteries

Author information +
History +
PDF

Abstract

Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si surface by impregnation to obtain the functionalized Si particles (Si/CDs). The phases and microstructures of the Si/CDs were observed using Fourier-transform infrared reflection, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Si/CDs were used as the active material of the anode for electrochemical performance experiments. The electrochemical performance of the Si/CD electrode was assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge and discharge experiment. The electrodes prepared with Si/CDs showed good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of the Si/CD electrode was 64.0%, which is twice as much as that of pure Si electrode under the same test conditions.

Keywords

binder / silicon anodes / lithium-ion batteries / carbon dot / multifunctional

Cite this article

Download citation ▾
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, Cheng-du Liang. Carbon dot-modified silicon nanoparticles for lithium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1603-1610 DOI:10.1007/s12613-020-2247-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat. Mater., 2017, 16(1): 16.

[2]

Gao XH, Li GR, Xu YY, Hong ZL, Liang CD, Lin Z. TiO2 microboxes with controlled internal porosity for high-performance lithium storage. Angew. Chem. Int. Ed., 2015, 54(48): 14331.

[3]

Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources, 2011, 196(1): 13.

[4]

Ashuri M, He QR, Shaw LL. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale, 2016, 8(1): 74.

[5]

Liang B, Liu YP, Xu YH. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources, 2014, 267, 469.

[6]

Zuo XX, Zhu J, Müller-Buschbaum P, Cheng YJ. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017, 31, 113.

[7]

Zhang QB, Chen HX, Luo LL, Zhao BT, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ. Sci., 2018, 11(3): 669.

[8]

Roduner E. Size matters: Why nanomaterials are different. Chem. Soc. Rev, 2006, 35(7): 583.

[9]

Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6(2): 1522.

[10]

Zheng ZM, Wu HH, Chen HX, Cheng Y, Zhang QB, Xie QS, Wang LS, Zhang KL, Wang MS, Peng DL, Zeng XC. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale, 2018, 10(47): 22203.

[11]

Zheng ZM, Wu HH, Liu HD, Zhang QB, He X, Yu SC, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu ML, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano, 2020, 14(8): 9545.

[12]

X.Y. Zhao and V.P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32(2021), No. 4, art. No. 042002.

[13]

H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, and Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries, Electrochem. Solid-State Lett., 2(1999), No. 11, art. No. 547.

[14]

Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008, 3(1): 31.

[15]

Yu CJ, Li X, Ma T, Rong JP, Zhang RJ, Shaffer J, An YH, Liu Q, Wei BQ, Jiang HQ. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater., 2012, 2(1): 68.

[16]

D.K. Kang, J.A. Corno, J.L. Gole, and H.C. Shin, Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries, J. Electrochem. Soc., 155(2008), No. 4, art. No. A276.

[17]

Escamilla-Pérez AM, Roland A, Giraud S, Guiraud C, Virieux H, Demoulin K, Oudart Y, Louvain N, Monconduit L. Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries. RSC Adv., 2019, 9(19): 10546.

[18]

Xu ZX, Yang J, Zhang T, Nuli YN, Wang JL, Hirano SI. Silicon microparticle anodes with self-healing multiple network binder. Joule, 2018, 2(5): 950.

[19]

T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645

[20]

Choi S, Kwon TW, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017, 357(6348): 279.

[21]

Z.H. Li, Y.P. Zhang, T.F. Liu, X.H. Gao, S.Y. Li, M. Ling, C.D. Liang, J.C. Zheng, and Z. Lin, Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries, Adv. Energy Mater., 10(2020), No. 20, art. No. 1903110.

[22]

Ling M, Xu YN, Zhao H, Gu XX, Qiu JX, Li S, Wu MY, Song XY, Yan C, Liu G, Zhang SQ. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy, 2015, 12, 178.

[23]

Y.J. Liu, Z.X. Tai, T.F. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z.P. Guo, and H.K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries, Adv. Mater., 29(2017), No. 44, art. No. 1703028.

[24]

Chen H, Ling M, Hencz L, Ling HY, Li GR, Lin Z, Liu G, Zhang SQ. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev., 2018, 118(18): 8936.

[25]

Park HK, Kong BS, Oh ES. Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem. Commun., 2011, 13(10): 1051.

[26]

Oh JM, Geiculescu O, DesMarteau D, Creager S. Ionomer binders can improve discharge rate capability in lithium-ion battery cathodes. J. Electrochem. Soc., 2011, 158(2): A207.

[27]

Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas JO. Influence of carbon black and binder on Li-ion batteries. J. Power Sources, 2001, 101(1): 1.

[28]

Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao ZN. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem., 2013, 5(12): 1042.

[29]

Sun YM, Lopez J, Lee HW, Liu N, Zheng GY, Wu CL, Sun J, Liu W, Chung JW, Bao ZN, Cui Y. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer. Adv. Mater., 2016, 28(12): 2455.

[30]

Zhang Q, Liu LB, Pan CG, Li D. Review of recent achievements in self-healing conductive materials and their applications. J. Mater. Sci., 2018, 53(1): 27.

[31]

Shi Y, Wang M, Ma CB, Wang YQ, Li XP, Yu GH. A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer. Nano Lett., 2015, 15(9): 6276.

[32]

Nunes RW, Martin JR, Johnson JF. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym. Eng. Sci., 1982, 22(4): 205.

[33]

Maldas D, Kokta BV. Improving adhesion of wood fiber with polystyrene by the chemical treatment of fiber with a coupling agent and the influence on the mechanical properties of composites. J. Adhes. Sci. Technol., 1989, 3(1): 529.

[34]

Baldan A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment. J. Mater. Sci., 2004, 39(1): 1.

[35]

Zhang XL, Wei CB, Li Y, Yu DS. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. TrAC Trends Anal. Chem., 2019, 116, 109.

[36]

Baker SN, Baker GA. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed., 2010, 49(38): 6726.

[37]

Li HT, Kang ZH, Liu Y, Lee ST. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem., 2012, 22(46): 24230.

[38]

Zhu SJ, Song YB, Zhao XH, Shao JR, Zhang JH, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res., 2015, 8(2): 355.

[39]

Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem., 2009, 19(4): 484.

[40]

Ray SC, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C, 2009, 113(43): 18546.

[41]

Zhou H, Nanda J, Martha SK, Unocic RR, Meyer HM, Sahoo Y, Miskiewicz P, Albrecht TF. Role of surface functionality in the electrochemical performance of silicon nanowire anodes for rechargeable lithium batteries. ACS Appl. Mater. Interfaces, 2014, 6(10): 7607.

[42]

Y.C. Yen, S.C. Chao, H.C. Wu, and N.L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, J. Electrochem. Soc., 156(2009), No. 2, art. No. A95.

[43]

Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed., 2013, 52(14): 3953.

[44]

Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater., 2014, 24(37): 5904.

[45]

Chen C, Lee SH, Cho M, Kim J, Lee Y. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl. Mater. Interfaces, 2016, 8(4): 2658.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/