Carbon dot-modified silicon nanoparticles for lithium-ion batteries
Qiao-kun Du , Qing-xia Wu , Hong-xun Wang , Xiang-juan Meng , Ze-kai Ji , Shu Zhao , Wei-wei Zhu , Chuang Liu , Min Ling , Cheng-du Liang
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1603 -1610.
Carbon dot-modified silicon nanoparticles for lithium-ion batteries
Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si surface by impregnation to obtain the functionalized Si particles (Si/CDs). The phases and microstructures of the Si/CDs were observed using Fourier-transform infrared reflection, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Si/CDs were used as the active material of the anode for electrochemical performance experiments. The electrochemical performance of the Si/CD electrode was assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge and discharge experiment. The electrodes prepared with Si/CDs showed good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of the Si/CD electrode was 64.0%, which is twice as much as that of pure Si electrode under the same test conditions.
binder / silicon anodes / lithium-ion batteries / carbon dot / multifunctional
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
X.Y. Zhao and V.P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32(2021), No. 4, art. No. 042002. |
| [13] |
H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, and Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries, Electrochem. Solid-State Lett., 2(1999), No. 11, art. No. 547. |
| [14] |
|
| [15] |
|
| [16] |
D.K. Kang, J.A. Corno, J.L. Gole, and H.C. Shin, Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries, J. Electrochem. Soc., 155(2008), No. 4, art. No. A276. |
| [17] |
|
| [18] |
|
| [19] |
T.F. Liu, Q.L. Chu, C. Yan, S.Q. Zhang, Z. Lin, and J. Lu, Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802645 |
| [20] |
|
| [21] |
Z.H. Li, Y.P. Zhang, T.F. Liu, X.H. Gao, S.Y. Li, M. Ling, C.D. Liang, J.C. Zheng, and Z. Lin, Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries, Adv. Energy Mater., 10(2020), No. 20, art. No. 1903110. |
| [22] |
|
| [23] |
Y.J. Liu, Z.X. Tai, T.F. Zhou, V. Sencadas, J. Zhang, L. Zhang, K. Konstantinov, Z.P. Guo, and H.K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries, Adv. Mater., 29(2017), No. 44, art. No. 1703028. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
Y.C. Yen, S.C. Chao, H.C. Wu, and N.L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, J. Electrochem. Soc., 156(2009), No. 2, art. No. A95. |
| [43] |
|
| [44] |
|
| [45] |
|
/
| 〈 |
|
〉 |