Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates

E. Safary , R. Taghiabadi , M. H. Ghoncheh

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1249 -1260.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1249 -1260. DOI: 10.1007/s12613-020-2244-4
Article

Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates

Author information +
History +
PDF

Abstract

The effect of different cooling rates (2.7, 5.5, 17.1, and 57.5°C/s) on the solidification parameters, microstructure, and mechanical properties of Al-15Mg2Si composites was studied. The results showed that a high cooling rate refined the Mg2Si particles and changed their morphology to more compacted forms with less microcracking tendency. The average radius and fraction of primary Mg2Si particles decreased from 20 µm and 13.5% to about 10 µm and 7.3%, respectively, as the cooling rate increased from 2.7 to 57.5°C/s. Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores. The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5°C/s increased the hardness and quality index by 25% and 245%, respectively. The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.

Keywords

Al-15Mg2Si composite / solidification cooling rate / thermal analysis / mechanical properties

Cite this article

Download citation ▾
E. Safary, R. Taghiabadi, M. H. Ghoncheh. Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(6): 1249-1260 DOI:10.1007/s12613-020-2244-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jahromi MS, Emamy M, Akrami A. Microstructural evaluation and tensile properties of Cd-added Al-15Mg2Si-3Cu composite. Adv. Mater. Process. Technol., 2016, 2(1): 73

[2]

Srinivas V, Singh V. Development of in situ as cast Al-Mg2Si particulate composite: Microstructure refinement and modification studies. Trans. Indian Inst. Met, 2012, 65(6): 759

[3]

A. Moharrami, A. Razaghian, M. Paidar, M. Šlapáková, O.O. Ojo, and R. Taghiabadi, Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing, Mater. Chem. Phys., 250(2020), art. No. 123066.

[4]

Mater. Res. Express, 2020, 7(3) art. No. 036533

[5]

AIP Conf. Proc., 2018, 1971(1) art. No. 020018

[6]

Chen L, Wang HY, Liu K, Wang C, Luo D, Jiang QC. Growth of Mg2Si crystals shaped by {100} and {111} facets from Al-Mg-Si melts in the presence of calcium. CrystEng-Comm, 2017, 19(22): 3058

[7]

K.Y. Wang, R.D. Zhao, F.F. Wu, X.F. Wu, M.H. Chen, J. Xiang, and S.H. Chen, Improving microstructure and mechanical properties of hypoeutectic Al-Mg2Si alloy by Gd addition, J. Alloys Compd., 813(2020), art. No. 152178.

[8]

Ghandvar H, Idris MH, Bakar TAA, Nafari A, Ahmad N. Microstructural characterization, solidification characteristics and tensile properties of Al-15%Mg2Si−x(Gd-Sb) in situ composite. J. Mater. Res. Technol., 2020, 9(3): 3272

[9]

Li HT, Scamans G, Fan ZY. Refinement of the microstructure of an Al-Mg2Si hypereutectic alloy by intensive melt shearing. Mater. Sci. Forum, 2013, 765, 97

[10]

Materials, 2019, 12(9) art. No. 1553

[11]

Lotfpour M, Emamy M, Allameh SH, Pourbahari B. Effect of hot extrusion on microstructure and tensile properties of Ca modified Mg-Mg2Si composite. Procedia Mater. Sci., 2015, 11, 38

[12]

Moharami A, Razaghian A. Corrosion behaviour of friction stir processed Al-Mg2Si composites. Mater. Sci. Technol., 2020, 36(18): 1922

[13]

J. Tribol., 2019, 141(12) art. No. 122202

[14]

Arch. Civ. Mech. Eng., 2020, 20(2) art. No. 33

[15]

J. Tribol., 2019, 141(3) art. No. 031604

[16]

Hu JM, Zhang WG, Fu DF, Teng J, Zhang H. Improvement of the mechanical properties of Al-Mg-Si alloys with nano-scale precipitates after repetitive continuous extrusion forming and T8 tempering. J. Mater. Res. Technol., 2019, 8(6): 5950

[17]

Nasiri N, Emamy M, Malekan A, Norouzi MH. Microstructure and tensile properties of cast Al-15%Mg2Si composite: Effects of phosphorous addition and heat treatment. Mater. Sci. Eng. A, 2012, 556, 446

[18]

Farahany S, Ghandvar H, Nordin NA, Ourdjini A, Idris MH. Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behaviour of an Al-20Mg2Si-2Cu-xBi composite. J. Mater. Sci. Technol., 2016, 32(11): 1083

[19]

Campbell J, Tiryakioglu M. Review of effect of P and Sr on modification and porosity development in Al-Si alloys. Mater. Sci. Technol., 2010, 26(3): 262

[20]

Materials, 2018, 11(7) art. No. 1230

[21]

Zhang LY, Jiang YH, Ma Z, Shan SF, Jia YZ, Fan CZ, Wang WK. Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. J. Mater. Process. Technol., 2008, 207(1–3): 107

[22]

Hosseini VA, Shabestari SG, Gholizadeh R. Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater. Des., 2013, 50, 7

[23]

Wang DT, Zhang HT, Guo C, Wu HL, Cui JZ. Effect of cooling rate on growth and transformation of primary Mg2Si in Al-Mg2Si in situ composites. J. Mater. Res, 2018, 33(20): 3458

[24]

Wang HY, Yu HC, Li C, Zha M, Wang C, Jiang QC. Morphology evolution of primary Mg2Si in Al-20Mg2Si-0.1Ca alloys prepared with various solidification cooling rates. CrystEngComm, 2017, 19(12): 1680

[25]

Hadian R, Emamy M, Varahram N, Nemati N. The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite. Mater. Sci. Eng. A, 2008, 490(1–2): 250

[26]

Li SP, Zhao SX, Pan MX, Zhao DQ, Chen XC, Barabash OM, Barabash RI. Solidification and structural characteristics of a(Al)-Mg2Si eutectic. Mater. Trans. JIM, 1997, 38(6): 553

[27]

Shimosaka D, Kumai S, Casarotto F, Watanabe S. Effect of cooling rates during solidification of Al-5.5%Mg-2.3%Si-0.6%Mn and Al-13%Mg2Si pseudo-binary alloys on their secondary-particle morphology and tear toughness. Mater. Trans., 2011, 52(5): 920

[28]

ASTM International, ASTM E92-82. Standard Test Method for Vickers Hardness of Metallic Materials, 2003, West Conshohocken, ASTM International

[29]

ASTM International, ASTM E112-12. Standard Test Methods for Determining Average Grain Size, 2013, West Conshohocken, ASTM International

[30]

Taylor RP, McClain ST, Berry JT. Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle. Int. J. Cast Met. Res., 1999, 11(4): 247

[31]

Kaygısız Y, Maraşlı N. Microstructural, mechanical and electrical characterization of directionally solidified Al-Si-Mg eutectic alloy. J. Alloys Compd., 2015, 618, 197

[32]

Zhang JT, Zhao YG, Xu XF, Liu XB. Effect of ultrasonic on morphology of primary Mg2Si in-situ Mg2Si/Al composite. Trans. Nonferrous Met. Soc. China, 2013, 23(10): 2852

[33]

Santos J, Jarfors AEW, Dahle AK. Formation of iron-rich intermetallic phases in Al-7Si-Mg: Influence of cooling rate and strontium modification. Metall. Mater. Trans. A, 2019, 50(9): 4148

[34]

Mahta M, Emamy M, Cao XJ, Campbell J. Olivante LV. Overview of β-Al5FeSi phase in Al-Si alloys. Materials Science Research Trends, 2008, New York, Nova Science Publishers, Inc., 251

[35]

Sjölander E, Seifeddine S. Optimization of solution treatment of cast Al-7Si-0.3Mg and Al-8Si-3Cu-0.5Mg alloys. Metall. Mater. Trans. A, 2014, 45(4): 1916

[36]

Wen KY, Hu W, Gottstein G. Intermetallic compounds in thixoformed aluminium alloy A356. Mater. Sci. Technol., 2003, 19(6): 762

[37]

Narayanan LA, Samuel FH, Gruzleski JE. Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metall. Mater. Trans. A, 1994, 25(8): 1761

[38]

Liang GF, Ali Y, You GQ, Zhang MX. Effect of cooling rate on grain refinement of cast aluminium alloys. Materialia, 2018, 3, 113

[39]

Stefanescu DM. ASM Handbook, Vol. 15, Casting, 1988, Materials Park, OH, ASM International

[40]

Carlson KD, Lin ZP, Beckermann C. Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys. Metall. Mater. Trans. B, 2007, 38(4): 541

[41]

Yao L. Experimental Investigation and Numerical Modeling of Microporosity Formation in Aluminum Alloy A356, 2011, Vancouver, The University of British Columbia

[42]

Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J. Therm. Anal. Calorim., 2014, 117(3): 1253

[43]

Shabestari SG, Ghoncheh MH, Momeni H. Evaluation of formation of intermetallic compounds in Al2024 alloy using thermal analysis technique. Thermochim. Acta, 2014, 589, 174

[44]

Toloui B, Hellawell A. Phase separation and undercooling in Al-Si eutectic alloy—The influence of freezing rate and temperature gradient. Acta Metall., 1976, 24(6): 565

[45]

Steen HAH, Hellawell A. The growth of eutectic silicon—Contributions to undercooling. Acta Metall., 1975, 23(4): 529

[46]

Shabestari SG, Saghafian H, Sahihi F, Ghoncheh MH. Investigation on microstructure of Al-25 wt%Mg2Si composite produced by slope casting and semi-solid forming. Int. J. Cast Met. Res., 2015, 28(3): 158

[47]

Tiryakioglu M, Campbell J, Alexopoulos ND. Quality indices for aluminum alloy castings: A critical review. Metall Mater. Trans. B, 2009, 40(6): 802

[48]

Ghandvar H, Idris MH, Ahmad N. Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in situ oomo°sites. J. Alloys Compd., 2018, 751, 370

[49]

Emamy M, Emami AR, Khorshidi R, Ghorbani MR. The effect of Fe-rich intermetallics on the microstructure, hardness and tensile properties of Al-Mg2Si die-cast composite. Mater. Des., 2013, 46, 881

[50]

Soltani N, Bahrami A, Pech-Canul MI. The effect of Ti on mechanical properties of extruded in-situ Al-15 pct Mg2Si composite. Metall. Mater. Trans. A, 2013, 44(9): 4366

[51]

Khorshidi R, Honarbakhsh Raouf A, Emamy M, Jafari Nodooshan HR. The evolution of heat treatment on the tensile properties of Na-modified Al-Mg2Si in situ composite. Adv. Mater. Res., 2011, 311-313, 283

[52]

Li A, Zhao XP, Huang HY, Ma Y, Gao L, Su YJ, Qian P. Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping. Int. J. Miner. Metall. Mater., 2019, 26(4): 507

[53]

El-Sayed MA, Hassanin H, Essa K. Bifilm defects and porosity in Al cast alloys. Int. J. Adv. Manuf. Technol., 2016, 86(5–8): 1173

[54]

Mugica GW, Tovio DO, Cuyas JC, González AC. Effect of porosity on the tensile properties of low ductility aluminum alloys. Mater. Res., 2004, 7(2): 221

[55]

Farahany S, Ghandvar H, Nordin NA, Ourdjini A. Microstructure characterization, mechanical, and tribological properties of slow-cooled Sb-treated Al-20Mg2Si-Cu in situ composites. J. Mater. Eng. Perform., 2017, 26(4): 1685

[56]

Hafiz MF, Kobayashi T. A study on the microstructure-fracture behavior relations in Al-Si casting alloys. Scripta Metall. Mater., 1994, 30(4): 475

[57]

Lee E, Mishra B. Effect of cooling rate on the mechanical properties of AA365 aluminum alloy heat-treated under T4, T5, and T6 conditions. Int. J. Metalcast., 2018, 12(3): 449

[58]

Ryen Ø, Holmedal B, Nijs O, Nes E, Sjölander E, Ekström HE. Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A, 2006, 37(6): 1999

[59]

Poznak A, Freiberg D, Sanders P. Lumley RN. Automotive wrought aluminium alloys. Fundamentals of Aluminium Metallurgy: Recent Advances, 2018, Duxford, Woodhead Publishing, 333

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/