Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review

Li Wang , Chao-fang Dong , Cheng Man , Ya-bo Hu , Qiang Yu , Xiao-gang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 754 -773.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 754 -773. DOI: 10.1007/s12613-020-2242-6
Invited Review

Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review

Author information +
History +
PDF

Abstract

The high strength martensite steels are widely used in aerospace, ocean engineering, etc., due to their high strength, good ductility and acceptable corrosion resistance. This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels. Pitting is the most common corrosion type of high strength stainless steels, which always occurs at weak area of passive film such as inclusions, carbide/intermetallic interfaces. Meanwhile, the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion. The precipitation, dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps, leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels. Yet, the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels. Finally, the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.

Keywords

corrosion behavior / high strength / martensite steel / microstructure / additive manufacturing

Cite this article

Download citation ▾
Li Wang, Chao-fang Dong, Cheng Man, Ya-bo Hu, Qiang Yu, Xiao-gang Li. Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(5): 754-773 DOI:10.1007/s12613-020-2242-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang YP, Zhan DP, Qi XW, Jiang ZH. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel. Mater. Charact., 2018, 144, 393.

[2]

Wang ZM, Li H, Shen Q, Liu WQ, Wang ZY. Nanoprecipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel. Acta Mater., 2018, 156, 158.

[3]

Ravitej SV, Murthy M, Krishnappa M. Review paper on optimization of process parameters in turning custom 465® precipitation hardened stainless steel. Mater. Today: Proceedings, 2018, 5(1): 2787

[4]

Duan HP, Liu X, Ran XZ, Li J, Liu D. Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition. Int. J. Miner. Metall. Mater., 2017, 24(9): 1027.

[5]

Wang D, Kahn H, Ernst F, Heuer AH. NiAl precipitation in delta ferrite grains of 17-7 precipitation-hardening stainless steel during low-temperature interstitial hardening. Scripta Mater., 2015, 108, 136.

[6]

Shahriari B, Vafaei R, Sharifi EM, Farmanesh K. Aging behavior of a copper-bearing high-strength low-carbon steel. Int. J. Miner. Metall. Mater., 2018, 25(4): 429.

[7]

Hu YB, Dong CF, Sun M, Xiao K, Zhong P, Li XG. Effects of solution pH and Cl on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments. Corros. Sci., 2011, 53(12): 4159.

[8]

Guo Q, Liu JH, Yu M, Li SM. Effect of passive film on mechanical properties of martensitic stainless steel 15-5PH in a neutral NaCl solution. Appl. Surf. Sci., 2015, 327, 313.

[9]

Li HX, Li DP, Zhang L, Wang YW, Wang XY, Lu MX. Passivity breakdown of 13Cr stainless steel under high chloride and CO2 environment. Int. J. Miner. Metall. Mater., 2019, 26(3): 329.

[10]

Sun M, Xiao K, Dong CF, Li XG, Zhong P. Effect of pH on semiconducting property of passive film formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution. Metall. Mater. Trans. A, 2013, 44(10): 4709.

[11]

Man C, Dong CF, Cui ZY, Xiao K, Yu Q, Li XG. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH. Appl. Surf. Sci., 2018, 427, 763.

[12]

Esfandiari M, Dong H. The corrosion and corrosion-wear behaviour of plasma nitrided 17-4PH precipitation hardening stainless steel. Surf. Coat. Technol., 2007, 202(3): 466.

[13]

Niu G, Chen YL, Wu HB, Wang X, Tang D. Corrosion behavior of high-strength spring steel for high-speed railway. Int. J. Miner. Metall. Mater., 2018, 25(5): 527.

[14]

D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, and X.G. Li, The passivity of selective laser melted 316L stainless steel, Appl. Surf. Sci., 504(2020), art. No. 144495.

[15]

Kong DC, Dong CF, Ni XQ, Zhang L, Yao JZ, Man C, Cheng XQ, Xiao K, Li XG. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol., 2019, 35(7): 1499.

[16]

Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater. Sci. Eng. R, 2009, 65(4–6): 39.

[17]

P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle, Steels in additive manufacturing: A review of their microstructure and properties, Mater. Sci. Eng. A, 772(2020), art. No. 138633.

[18]

Hu Y, Dong C, Luo H, Xiao K, Zhong P, Li X. Study on the hydrogen embrittlement of aermet100 using hydrogen permeation and SSRT techniques. Metall. Mater. Trans. A, 2017, 48(9): 4046.

[19]

Sun M, Xiao K, Dong CF, Li XG, Zhong P. Electrochemical and initial corrosion behavior of ultrahigh strength steel by scanning kelvin probe. J. Mater. Eng. Perform., 2013, 22(3): 815.

[20]

Chung CY, Tzeng YC. Effects of aging treatment on the precipitation behavior of ε-Cu phase and mechanical properties of metal injection molding 17-4PH stainless steel. Mater. Lett., 2019, 237, 228.

[21]

Hättestrand M, Nilsson JO, Stiller K, Liu P, Andersson M. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel. Acta Mater., 2004, 52(4): 1023.

[22]

Warren J, Wei DY. The low cycle fatigue behavior of the controlled transformation stainless steel alloy AM355 at 121, 204 and 315°C. Mater. Sci. Eng. A, 2008, 475(1–2): 148.

[23]

Xu XL, Yu ZW. Metallurgical analysis on a bending failed pump-shaft made of 17-7PH precipitation-hardening stainless steel. J. Mater. Process. Technol, 2008, 198(1–3): 254.

[24]

Ifergane S, Pinkas M, Barkay Z, Brosh E, Ezersky V, Beeri O, Eliaz N. The relation between aging temperature, microstructure evolution and hardening of custom 465® stainless steel. Mater. Charact., 2017, 127, 129.

[25]

Tian JL, Shahzad MB, Wang W, Yin LC, Jiang ZH, Yang K. Role of Co in formation of Ni-Ti clusters in maraging stainless steel. J. Mater. Sci. Technol., 2018, 34(9): 1671.

[26]

Dai YL, Yu SF, Huang AG, Shi YS. Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing. Int. J. Miner. Metall. Mater., 2020, 27(7): 933.

[27]

S. Sarkar, C.S. Kumar, and A.K. Nath, Effects of different surface modifications on the fatigue life of selective laser melted 15-5 PH stainless steel, Mater. Sci. Eng. A, 762(2019), art. No. 138109.

[28]

L. Wang, C.F. Dong, D.C. Kong, C. Man, J.X. Liang, C.J. Wang, K. Xiao, and X.G. Li, Effect of manufacturing parameters on the mechanical and corrosion behavior of selective laser-melted 15-5PH stainless steel, Steel Res. Int., 91(2019), No. 2, art. No. 1900447.

[29]

Nong XD, Zhou XL, Li JH, Wang YD, Zhao YF, Brochu M. Selective laser melting and heat treatment of precipitation hardening stainless steel with a refined microstructure and excellent mechanical properties. Scripta Mater, 2020, 178, 7.

[30]

Sun Y, Hebert RJ, Aindow M. Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel. Mater. Des, 2018, 156, 429.

[31]

Zhang B, Ma XL. A review—Pitting corrosion initiation investigated by TEM. J. Mater. Sci. Technol., 2019, 35(7): 1455.

[32]

Shi WN, Yang SF, Li JS. Effect of nonmetallic inclusions on localized corrosion of spring steel. Int. J. Miner. Metall. Mater., 2021, 28(3): 390.

[33]

Y.Q. Zhang, S.H. Cheng, S.J. Wu, and F.J. Cheng, The evolution of microstructure and intergranular corrosion resistance of duplex stainless steel joint in multi-pass welding, J. Mater. Process. Technol., 277(2020), art. No. 116471.

[34]

S. Hu, Y.Z. Mao, X.B. Liu, E.H. Han, and H. Hänninen, Inter-granular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging, Corros. Sci., 166(2020), art. No. 108420.

[35]

Venezuela J, Liu QL, Zhang MX, Zhou QJ, Atrens A. The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test. Corros. Sci., 2015, 99, 98.

[36]

Fan YH, Zhang B, Yi HL, Hao GS, Sun YY, Wang JQ, Han EH, Ke W. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Mater., 2017, 139, 188.

[37]

Lynch SP. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process. Acta Metall., 1988, 36(10): 2639.

[38]

Venezuela J, Liu QL, Zhang MX, Zhou QJ, Atrens A. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corros. Rev., 2016, 34(3): 153.

[39]

Lynch SP. Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work. Metall. Mater. Trans. A, 2013, 44(3): 1209.

[40]

Snir Y, Haroush S, Dannon A, Landau A, Eliezer D, Gelbstein Y. Aging condition and trapped hydrogen effects on the mechanical behavior of a precipitation hardened martensitic stainless steel. J. Alloys Compd., 2019, 805, 509.

[41]

Vasilenko II, Kapinos VI, Krutsan AM, Kultan BI. The corrosion-fatigue fracture of high-strength steels in chloride solutions. Soviet Mater. Sci., 1981, 16(6): 517.

[42]

Xie Y, Zhang JS. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review. J. Nucl. Mater., 2015, 466, 85.

[43]

Sun M, Xiao K, Dong CF, Li XG, Zhong P. Stress corrosion cracking of ultraultra-high strength martensite steel Cr9Ni5MoCo14 in 3.5% NaCl solution. Aerosp. Sci. Technol., 2014, 36, 125.

[44]

Park SA, Le DP, Kim JG. Alloying effect of chromium on the corrosion behavior of low-alloy steels. Mater. Trans., 2013, 54(9): 1770.

[45]

Zhou YL, Chen J, Xu Y, Liu ZY. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl containing environment. J. Mater. Sci. Technol., 2013, 29(2): 168.

[46]

Y.W. Tian, C.F. Dong, G. Wang, X.Q. Cheng, and X.G. Li, The effect of nickel on corrosion behaviour of high-strength low alloy steel rebar in simulated concrete pore solution, Constr. Build. Mater., 246(2020), art. No. 118462.

[47]

Xiao XM, Peng Y, Ma CY, Tian ZL. Effects of alloy element and microstructure on corrosion resistant property of deposited metals of weathering steel. J. Iron Steel Res. Int., 2016, 23(2): 171.

[48]

Potgieter JH, Olubambi PA, Cornish L, Machio CN, Sherif ESM. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros. Sci., 2008, 50(9): 2572.

[49]

Luo H, Yu Q, Dong CF, Sha G, Liu ZB, Liang JX, Wang L, Han G, Li XG. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel. Corros. Sci, 2018, 139, 185.

[50]

Li HY, Dong CF, Xiao K, Li XG, Zhong P. Effect of alloying elements on the corrosion behavior of 0Cr12Ni3Co12Mo4W ultra high strength stainless steel. Int. J. Electrochem. Sci., 2015, 10(12): 10173

[51]

Maurice V, Yang W P, Marcus P. X-Ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe-18Cr-13Ni single-crystal surfaces. J. Electrochem. Soc., 1998, 145(3): 909.

[52]

Choi YS, Kim JG, Park YS, Park JY. Austenitizing treatment influence on the electrochemical corrosion behavior of 0.3C-14Cr-3Mo martensitic stainless steel. Mater. Lett, 2007, 61(1): 244.

[53]

Kaneko K, Fukunaga T, Yamada K, Nakada N, Kikuchi M, Saghi Z, Barnard JS, Midgley PA. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel. Scripta Mater., 2011, 65(6): 509.

[54]

Lu SY, Yao KF, Chen YB, Wang MH, Liu X, Ge XY. The effect of tempering temperature on the microstructure and electrochemical properties of a 13wt.% Cr-type martensitic stainless steel. Electrochim. Acta, 2015, 165, 45.

[55]

Raja KS, Prasad Rao K. On the hardness criterion for stress corrosion cracking resistance of 17-4PH stainless steel. J. Mater. Sci. Lett., 1993, 12(12): 963.

[56]

Xu W, Rivera-Díaz-Del-Castillo PEJ, Wang W, Yang K, Bliznuk V, Kestens LAI, Van Der Zwaag S. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates. Acta Mater., 2010, 58(10): 3582.

[57]

Sun L, Simm TH, Martin TL, McAdam S, Galvin DR, Perkins KM, Bagot PAJ, Moody MP, Ooi SW, Hill P, Rawson MJ, Bhadeshia HKDH. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates. Acta Mater., 2018, 149, 285.

[58]

Wang L, Dong CF, Yao JZ, Dai ZB, Man C, Yin YP, Xiao K, Li XG. The effect of η-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich custom 465 steel. Corros. Sci., 2019, 154, 178.

[59]

Aydoğdu GH, Aydinol MK. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel. Corros. Sci., 2006, 48(11): 3565.

[60]

Kain V, Chandra K, Adhe KN, De PK. Detecting classical and martensite-induced sensitization using the electrochemical potentiokinetic reactivation test. Corrosion, 2005, 61(6): 587.

[61]

Alonso-Falleiros N, Magri M, Falleiros IGS. Intergranular corrosion in a martensitic stainless steel detected by electrochemical tests. Corrosion, 1999, 55(8): 769.

[62]

Man C, Dong CF, Kong DC, Wang L, Li XG. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corros. Sci, 2019, 151, 108.

[63]

Aquino JM, Della Rovere CA, Kuri SE. Intergranular corrosion susceptibility in supermartensitic stainless steel weldments. Corros. Sci., 2009, 51(10): 2316.

[64]

Bhambri SK. Intergranular fracture in 13wt% chromium martensitic stainless steel. J. Mater. Sci, 1986, 21(5): 1741.

[65]

Matsumoto Y, Takai K. Method of evaluating hydrogen embrittlement susceptibility of tempered martensitic steel showing intergranular fracture. Metall. Mater. Trans. A, 2018, 49(2): 490.

[66]

Tavares SSM, Da Silva FJ, Scandian C, Da Silva GF, De Abreu HFG. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel. Corros. Sci., 2010, 52(11): 3835.

[67]

Takahashi J, Kawakami K, Kobayashi Y, Tarui T. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater., 2010, 63(3): 261.

[68]

Nagao A, Martin ML, Dadfarnia M, Sofronis P, Robertson IM. The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel. Acta Mater., 2014, 74, 244.

[69]

Chen YS, Lu HZ, Liang J, Liang JT, Rosenthal A, Liu HW, Sneddon G, McCarroll I, Zhao ZZ, Li W, Guo AM, Cairney JM. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science, 2020, 367(6474): 171.

[70]

F.G. Wei, T. Hara, and K. Tsuzaki, Nano-preciptates design with hydrogen trapping character in high strength steel, Adv. Steels, (2011), p. 87.

[71]

F.G. Wei, T. Hara, and K. Tsuzaki, Nano-preciptates design with hydrogen trapping character in high strength steel, [In] Y. Weng, H. Dong, and Y. Gan, eds. Advanced Steels. Springer, Berlin, Heidelberg, p. 87.

[72]

Li XF, Zhang J, Fu QQ, Song XL, Shen SC, Li QZ. A comparative study of hydrogen embrittlement of 20SiMn2CrNiMo, PSB1080 and PH13-8Mo high strength steels. Mater. Sci. Eng. A, 2018, 724, 518.

[73]

Tsay LW, Chen HH, Chiang MF, Chen C. The influence of aging treatments on sulfide stress corrosion cracking of PH13-8 Mo steel welds. Corros. Sci., 2007, 49(6): 2461.

[74]

Li XF, Zhang J, Fu QQ, Akiyama E, Song XL, Shen SC, Li QZ. Hydrogen embrittlement of high strength steam turbine last stage blade steels: Comparison between PH17-4 steel and PH13-8Mo steel. Mater. Sci. Eng. A, 2019, 742, 353.

[75]

Yao J, Cahoon JR. Experimental studies of grain boundary diffusion of hydrogen in metals. Acta Metall. Mater., 1991, 39(1): 119.

[76]

Oudriss A, Creus J, Bouhattate J, Conforto E, Berziou C, Savall C, Feaugas X. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater., 2012, 60(19): 6814.

[77]

Momotani Y, Shibata A, Yonemura T, Bai Y, Tsuji N. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel. Scripta Mater, 2020, 178, 318.

[78]

Raja KS, Prasad Rao K. Stress corrosion cracking behaviour of 17-4PH stainless steel weldments at open-circuit potentials. J. Mater. Sci. lett., 1993, 12(12): 957.

[79]

Li GF, Wu RG, Lei TC. Carbide- matrix interface mechanism of stress corrosion cracking behavior of high-strength CrMo steels. Metall. Trans. A, 1992, 23(10): 2879.

[80]

Gladshtein LI, Goritskii VM, Evtushenko NA. Effect of sulfur and phosphorus on the brittle fracture and corrosion cracking susceptibility of high-strength Cr-Ni-Mo steel with additions of titanium, boron, and niobium. Soviet Mater. Sci., 1989, 25(2): 222.

[81]

Xu L, Wei DY, Yu Y, Zhang H, Bai BZ. Effect of microstructure on corrosion fatigue behavior of 1500 MPa level carbide-free bainite/martensite dual-phase high strength steel. J. Iron Steel Res. Int., 2011, 18(4): 63.

[82]

Hamano R. Roles of precipitates on corrosion fatigue crack growth of high-strength steels in corrosive environments. J. Mater. Sci., 1989, 24(2): 693.

[83]

Qiao QQ, Lu L, Fan ED, Zhao JB, Liu YN, Peng GC, Huang YH, Li XG. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int. J. Hydrogen Energy, 2019, 44(51): 27962.

[84]

Ghosh R, Venugopal A, Arun Chand CV, Ramesh Narayanan P, Pant B, Cherian RM. Effect of heat treatment anomaly on the stress corrosion cracking behavior of 17-4PH martensitic stainless steel. Trans. Indian Inst. Met., 2019, 72(6): 1503.

[85]

Song YY, Li XY, Rong LJ, Li YY. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels. Mater. Sci. Eng. A, 2011, 528(12): 4075.

[86]

Horvath J, Uhlig HH. Critical potentials for pitting corrosion of Ni, Cr-Ni Cr-Fe, and related stainless steels. J. Electrochem. Soc., 1968, 115(8): 791.

[87]

Lei XW, Feng YR, Zhang JX, Fu AQ, Yin CX, Macdonald DD. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel. Electrochim. Acta, 2016, 191, 640.

[88]

Pereda MD, Gervasi CA, Llorente CL, Bilmes PD. Microelectrochemical corrosion study of super martensitic welds in chloride-containing media. Corros. Sci, 2011, 53(12): 3934.

[89]

Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. Mater. Des., 2008, 29(10): 1934.

[90]

Frappart S, Feaugas X, Creus J, Thebault F, Delattre L, Marchebois H. Study of the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test. J. Phys. Chem. Solids, 2010, 71(10): 1467.

[91]

Zhu X, Li W, Zhao HS, Wang L, Jin XJ. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel. Int. J. Hydrogen Energy, 2014, 39(24): 13031.

[92]

Liu QL, Venezuela J, Zhang MX, Zhou QJ, Atrens A. Hydrogen trapping in some advanced high strength steels. Corros. Sci., 2016, 111, 770.

[93]

Ding YS, Tsay LW, Chiang MF, Chen C. Gaseous hydrogen embrittlement of PH13-8Mo steel. J. Nucl. Mater, 2009, 385(3): 538.

[94]

Park YD, Maroef I, Landau A, Olson DL. Retained austenite as a hydrogen trap in steel welds. Weld. J., 2002, 81(2): 27S

[95]

Venkatasubramanian TV, Baker TJ. Enhanced stress corrosion resistance from steels having a dual-phase austenitemartensite microstructure. Metall. Mater. Trans. A, 1983, 14(9): 1921.

[96]

Webster D. The stress corrosion resistance and fatigue crack growth rate of a high strength martensitic stainless steel, AFC 77. Metall. Trans., 1970, 1(10): 2919.

[97]

Ritchie RO, Castro Cedeno MH, Zackay VF, Parker ER. Effects of silicon additions and retained austenite on stress corrosion cracking in ultrahigh strength steels. Metall. Trans. A, 1978, 9, 35.

[98]

Schmuki P, Hildebrand H, Friedrich A, Virtanen S. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. Corros. Sci., 2005, 47(5): 1239.

[99]

Tavares SSM, Pardal JM, Martins TRB, Da Silva MR. Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel. J. Mater. Eng. Perform., 2017, 26(6): 2512.

[100]

Vuillemin B, Philippe X, Oltra R, Vignal V, Coudreuse L, Finot E, Dufour LC. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection. Corros. Sci., 2003, 45(6): 1143.

[101]

Wu YL, Guo Q, Lv WY, Huang F. The pitting behavior of newly modified 17-4 precipitation hardened stainless steel with different Nb, N, and Mo contents. J. Mater. Eng. Perform., 2020, 29(1): 135.

[102]

Wang YF, Cheng GX, Wu W, Li Y. Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM. Corros. Sci., 2018, 130, 252.

[103]

Man C, Dong CF, Xiao K, Yu Q, Li XG. The combined effect of chemical and structural factors on pitting corrosion induced by MnS-(Cr, Mn, Al)O duplex inclusions. Corrosion, 2018, 74(3): 312.

[104]

Wei WZ, Wu KM, Zhang X, Liu J, Qiu P, Cheng L. In-situ characterization of initial marine corrosion induced by rare-earth elements modified inclusions in Zr-Ti deoxidized low-alloy steels. J. Mater. Res. Technol., 2020, 9(2): 1412.

[105]

Todoshchenko OMI, Yagodzinskyy Y, Saukkonen T, Hanninen H. Role of nonmetallic inclusions in hydrogen embrittlement of high-strength carbon steels with different microalloying. Metall. Mater. Trans. A, 2014, 45(11): 4742.

[106]

Liu XG, Wang C, Gui JT, Xiao QQ, Guo BF. Effect of MnS inclusions on deformation behavior of matrix based on in-situ experiment. Mater. Sci. Eng. A, 2019, 746, 239.

[107]

Kobayashi Y, Szklarska-Smialowska Z. A study of the hydrogen-induced degradation of two steels differing in sulfur content. Metall. Trans. A, 1986, 17, 2255.

[108]

Shen SC, Song XL, Li QZ, Li XF, Zhu RH, Yang GX. A study on stress corrosion cracking and hydrogen embrittlement of Jethete M152 martensitic stainless steel. Mater. Sci. Eng. A, 2019, 740–741, 243.

[109]

Liu ZY, Li XG, Du CW, Lu L, Zhang YR, Cheng YF. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. Corros. Sci., 2009, 51(4): 895.

[110]

Yao J, Qu XH, He XB, Zhang L. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high v alloyed powder metallurgy tool steel. Int. J. Miner. Metall. Mater., 2012, 19(7): 608.

[111]

Alp T, Husain Z, Cottis RA. Corrosion fatigue crack initiation and growth in 18 Ni maraging steel. J. Mater. Sci, 1986, 21(9): 3263.

[112]

Kingkam W, Zhao CZ, Li H, Zhang HX, Li ZM. Hot deformation and corrosion resistance of high-strength low-alloy steel. Acta Metall. Sin., 2019, 32(4): 495.

[113]

Wu HB, Wu T, Niu G, Li T, Sun RY, Gu Y. Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment. Int. J. Miner. Metall. Mater., 2018, 25(3): 315.

[114]

Lin DL, Wu JS, Lan Y. Influence of austenitizing temperature on stress corrosion in 4330m steel—the role of impurity segregation in stress corrosion cracking of high strength steel. Metall. Trans. A, 1988, 19(9): 2225.

[115]

Yin SB, Li DY, Bouchard R. Effects of strain rate of prior deformation on corrosion and corrosive wear of aisi 1045 steel in a 3.5 pct NaCl solution. Metall. Mater. Trans. A, 2007, 38(5): 1032.

[116]

Shen SC, Li XF, Zhang P, Nan YL, Yang GX, Song XL. Effect of solution-treated temperature on hydrogen embrittlement of 17-4PH stainless steel. Mater. Sci. Eng. A, 2017, 703, 413.

[117]

Tsay LW, Lu HL, Chen C. The effect of grain size and aging on hydrogen embrittlement of a maraging steel. Corros. Sci., 2008, 50(9): 2506.

[118]

Takasawa K, Ishigaki R, Wada Y, Kayano R. Absorption of hydrogen in high-strength low-alloy steel during tensile deformation in gaseous hydrogen. ISIJ Int., 2010, 50(10): 1496.

[119]

Li GF, Wu RG, Lei TC. Effect of prior austenitic grain size on stress corrosion cracking of a high-strength steel. Metall. Trans. A, 1990, 21, 503.

[120]

Irrinki H, Harper T, Badwe S, Stitzel J, Gulsoy O, Gupta G, Atre SV. Effects of powder characteristics and processing conditions on the corrosion performance of 17-4 PH stainless steel fabricated by laser-powder bed fusion. Prog. Addit. Manuf., 2018, 3, 39.

[121]

A. Shahriari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B.S. Amirkhiz, and M. Mohammadi, Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel, Electrochim. Acta, 339(2020), art. No. 135925.

[122]

L. Wang, C.F. Dong, C. Man, D.C. Kong, K. Xiao, and X.G. Li, Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment, Corros. Sci., 166(2020), art. No. 108427.

[123]

Sarkar S, Mukherjee S, Kumar CS, Kumar Nath A. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5PH stainless steel parts built by selective laser melting process. J. Manuf. Process., 2020, 50, 279.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/