Review of electrochemical degradation of phenolic compounds

You Xue , Xi Hu , Qian Sun , Hong-yang Wang , Hai-long Wang , Xin-mei Hou

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (9) : 1413 -1428.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (9) : 1413 -1428. DOI: 10.1007/s12613-020-2241-7
Invited Review

Review of electrochemical degradation of phenolic compounds

Author information +
History +
PDF

Abstract

Phenolic compounds are widely present in domestic and industrial sewage and have serious environmental hazards. Electrochemical oxidation (EO) is one of the most promising methods for sewage degradation because of its high efficiency, environmental compatibility, and safety. In this work, we present an in-depth overview of the mechanism and factors affecting the degradation of phenolic compounds by EO. In particular, the effects of treatment of phenolic compounds with different anode materials are discussed in detail. The non-active anode shows higher degradation efficiency, less intermediate accumulation, and lower energy consumption than the active anode. EO combined with other treatment methods (biological, photo, and Fenton) presents advantages, such as low energy consumption and high degradation rate. Meanwhile, the remaining drawbacks of the EO process in the phenolic compound treatment system have been discussed. Furthermore, future research directions are put forward to improve the feasibility of the practical application of EO technology.

Keywords

electrochemical oxidation / phenolic compounds / degradation mechanism / anode material

Cite this article

Download citation ▾
You Xue, Xi Hu, Qian Sun, Hong-yang Wang, Hai-long Wang, Xin-mei Hou. Review of electrochemical degradation of phenolic compounds. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(9): 1413-1428 DOI:10.1007/s12613-020-2241-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun XF, Wang CW, Li YB, Wang WG, Wei J. Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination, 2015, 355, 68.

[2]

Han YH, Quan X, Chen S, Zhao HM, Cui CY, Zhao YZ. Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution. J. Colloid Interface Sci., 2006, 299(2): 766.

[3]

D.M. Naguib and N.M. Badawy, Phenol removal from wastewater using waste products, J. Environ. Chem. Eng., 8(2020), No. 1, art. No. 103592.

[4]

Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep., 2016, 2(3): 157.

[5]

Moreira FC, Boaventura RAR, Brillas E, Vilar VJP. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B, 2017, 202, 217.

[6]

Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review. Chem. Rev., 2015, 115(24): 13362.

[7]

He YP, Lin HB, Guo ZC, Zhang WL, Li HD, Huang WM. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Sep. Purif. Technol., 2019, 212, 802.

[8]

Li XL, Xu H, Yan W. Fabrication and characterization of a PbO2-TiN composite electrode by co-deposition method. J. Electrochem. Soc., 2016, 163(10): D592.

[9]

Xie RZ, Meng XY, Sun PZ, Niu JF, Jiang WJ, Bottomley L, Li D, Chen YS, Crittenden J. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal. B, 2017, 203, 515.

[10]

Yao YW, Teng GG, Yang Y, Huang CJ, Liu BC, Guo L. Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways. Sep. Purif Technol., 2019, 211, 456.

[11]

Chen AQ, Xia SJ, Pan HY, Xi JH, Qin HY, Lu HW, Ji ZG. A promising Ti/SnO2 anodes modified by Nb/Sb codoping. J. Electroanal. Chem., 2018, 824, 169.

[12]

Xu H, Guo WQ, Wu J, Feng JT, Yang HH, Yan W. Preparation and characterization of titanium-based PbO2 electrodes modified by ethylene glycol. RSC Adv., 2016, 6(9): 7610.

[13]

Duan XY, Xu F, Wang YN, Chen YW, Chang LM. Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution. Electrochim. Acta, 2018, 282, 662.

[14]

Zhou XZ, Liu SQ, Yu HX, Xu AL, Li JS, Sun XY, Shen JY, Han W, Wang LJ. Electrochemical oxidation of pyrrole, pyrazole and tetrazole using a TiO2 nanotubes based SnO2-Sb/3D highly ordered macro-porous PbO2 electrode. J. Electroanal. Chem., 2018, 826, 181.

[15]

Zhu CW, Jiang CQ, Chen S, Mei RQ, Wang X, Cao J, Ma L, Zhou B, Wei QP, Ouyang GQ, Yu ZM, Zhou KC. Ultrasound enhanced electrochemical oxidation of Alizarin Red S on boron doped diamond (BDD) anode: Effect of degradation process parameters. Chemosphere, 2018, 209, 685.

[16]

Carneiro JF, Aquino JM, Silva AJ, Barreiro JC, Cass QB, Rocha-Filho RC. The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: Kinetics and follow-up of oxidation intermediates and antimicrobial activity. Chemosphere, 2018, 206, 674.

[17]

Siedlecka EM, Ofiarska A, Borzyszkowska AF, Białk-Bielińska A, Stepnowski P, Pieczyńska A. Cytostatic drug removal using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity. Water Res., 2018, 144, 235.

[18]

Kaur R, Kushwaha JP, Singh N. Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: Evaluation and mechanistic approach. Chemosphere, 2018, 193, 685.

[19]

Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta, 1994, 39(11–12): 1857.

[20]

Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A. Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J. Electrochem. Soc., 1999, 146(6): 2175.

[21]

Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev., 2009, 109(12): 6541.

[22]

Fierro S, Ouattara L, Calderon EH, Passas-Lagos E, Baltruschat H, Comninellis C. Investigation of formic acid oxidation on Ti/IrO2 electrodes. Electrochim. Acta, 2009, 54(7): 2053.

[23]

Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res., 2005, 39(10): 1972.

[24]

Quiroz MA, Sánchez-Salas JL, Reyna S, Bandala ER, Peralta-Hernández JM, Martínez-Huitle CA. Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: Role of anodic material. J. Hazard. Mater., 2014, 268, 6.

[25]

X.Y. Huang, Y. Zhang, J. Bai, J.H. Li, L.S. Li, T.S. Zhou, S. Chen, J.C. Wang, M. Rahim, X.H. Guan, and B.X. Zhou, Efficient degradation of N-containing organic wastewater via chlorine oxide radical generated by a photoelectrochemical system, Chem. Eng. J., 392(2020), art. No. 123695.

[26]

Li F, Du PH, Liu W, Li XS, Ji HD, Duan J, Zhao DY. Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: Solar-light-driven photocatalytic activity and computational chemistry analysis. Chem. Eng. J., 2018, 331, 685.

[27]

Liu Y, Liu HL. Comparative studies on the electrocatalytic properties of modified PbO2 anodes. Electrochim. Acta, 2008, 53(16): 5077.

[28]

Li L, Goel RK. Role of hydroxyl radical during electrolytic degradation of contaminants. J. Hazard. Mater., 2010, 181(1–3): 521.

[29]

Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis C. Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta, 2001, 46(23): 3573.

[30]

H. Jiang, C.Y. Dang, W. Liu, and T. Wang, Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes, Chemosphere, 248(2020), art. No. 126033.

[31]

C. Liu, Y. Min, A.Y. Zhang, Y. Si, J.J. Chen, and H.Q. Yu, Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms, Water Res., 165(2019), art. No. 114980.

[32]

Lee Y, von Gunten U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res., 2012, 46(19): 6177.

[33]

Zhang CY, Dong JY, Liu M, Zhao WJ, Fu DG. The role of nitrite in electrocatalytic oxidation of phenol: An unexpected nitration process relevant to groundwater remediation with boron-doped diamond electrode. J. Hazard. Mater., 2019, 373, 547.

[34]

J. Zambrano and B. Min, Comparison on efficiency of electrochemical phenol oxidation in two different supporting electrolytes (NaCl and Na2SO4) using Pt/Ti electrode, Environ. Technol. Innovation, 15(2019), art. No. 100382.

[35]

Y.W. Yao, G.G. Teng, Y. Yang, B.L. Ren, and L.L. Cui, Electrochemical degradation of neutral red on PbO2/α-Al2O3 composite electrodes: Electrode characterization, byproducts and degradation mechanism, Sep. Purif. Technol., 227(2019), art. No. 115684.

[36]

Yang WH, Yang WT, Lin XY. Preparation and characterization of a novel Bi-doped PbO2 electrode. Acta Phys. Chim. Sin., 2012, 28(4): 831.

[37]

Shmychkova O, Luk’yanenko T, Yakubenko A, Amadelli R, Velichenko A. Electrooxidation of some phenolic compounds at Bi-doped PbO2. Appl. Catal. B, 2015, 162, 346.

[38]

Cao JL, Zhao HY, Cao FH, Zhang JQ, Cao CN. Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes. Electrochim. Acta, 2009, 54(9): 2595.

[39]

Kong JT, Shi SY, Kong LC, Zhu XP, Ni JR. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta, 2007, 53(4): 2048.

[40]

Xu F, Chang LM, Duan XY, Bai WH, Sui XY, Zhao XS. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis. Electrochim. Acta, 2019, 300, 53.

[41]

Duan XY, Li JR, Liu W, Chang LM, Yang CW. Fabrication and characterization of a novel PbO2 electrode with a CNT interlayer. RSC Adv., 2016, 6(34): 28927.

[42]

Xu M, Wang ZC, Wang FW, Hong P, Wang CY, Ouyang XM, Zhu CG, Wei YJ, Hun YH, Fang WY. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation. Electrochim. Acta, 2016, 201, 240.

[43]

Zhang YN, Niu QY, Gu XT, Yang NJ, Zhao GH. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale, 2019, 11(25): 11992.

[44]

Kong Y, Wang ZL, Wang Y, Yuan J, Chen ZD. Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Mater., 2011, 26(6): 459.

[45]

C. Zhang, X.R. Lu, Y. Lu, M.H. Ding, and W.Z. Tang, Titanium-boron doped diamond composite: A new anode material, Diamond Relat. Mater., 98(2019), art. No. 107490.

[46]

Zanin H, May PW, Fermin DJ, Plana D, Vieira SMC, Milne WI, Corat EJ. Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl. Mater. Interfaces, 2014, 6(2): 990.

[47]

Zhao Y, Yu HT, Quan X, Chen S, Zhao HM, Zhang YB. Preparation and characterization of vertically columnar boron doped diamond array electrode. Appl. Surf. Sci., 2014, 303, 419.

[48]

Luo DB, Wu LZ, Zhi JF. Fabrication of boron-doped diamond nanorod forest electrodes and their application in non-enzymatic amperometric glucose biosensing. ACS Nano, 2009, 3(8): 2121.

[49]

Yang NJ, Uetsuka H, Osawa E, Nebel CE. Vertically aligned nanowires from boron-doped diamond. Nano Lett., 2008, 8(11): 3572.

[50]

Sun JR, Lu HY, Lin HB, Huang WM, Li HD, Lu J, Cui T. Boron doped diamond electrodes based on porous Ti substrates. Mater. Lett., 2012, 83, 112.

[51]

X.R. Lu, M.H. Ding, L. Zhang, Z.L. Yang, Y. Lu, and W.Z. Tang, Optimizing the microstructure and corrosion resistance of BDD coating to improve the service life of Ti/BDD coated electrode, Materials, 12(2019), No. 19, art. No. 3188.

[52]

L. Guo and G.H. Chen, Long-term stable Ti/BDD electrode fabricated with HFCVD method using two-stage substrate temperature, J. Electrochem. Soc., 154(2007), No. 12, art. No. D657.

[53]

Y. Tian, X.M. Chen, C. Shang, and G.H. Chen, Active and stable Ti/Si/BDD anodes for electro-oxidation, J. Electrochem. Soc., 153(2006), No. 7, art. No. J80.

[54]

Duan TG, Chen Y, Wen Q, Duan Y, Qi LJ. Component-controlled synthesis of gradient electrode for efficient electrocatalytic dye decolorization. J. Electrochem. Soc., 2016, 163(7): H499.

[55]

Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21): 11060.

[56]

Feng YJ, Cui YH, Logan B, Liu ZQ. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol. Chemosphere, 2008, 70(9): 1629.

[57]

Cui YH, Feng YJ, Liu ZQ. Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes. Electrochim. Acta, 2009, 54(21): 4903.

[58]

Chen XM, Chen GH, Yue PL. Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content. J. Phys. Chem. B, 2001, 105(20): 4623.

[59]

Zhao GH, Cui X, Liu MC, Li PQ, Zhang YG, Cao TC, Li HX, Lei YZ, Liu L, Li DM. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ. Sci. Technol., 2009, 43(5): 1480.

[60]

Duan Y, Chen Y, Wen Q, Duan TG. Fabrication of dense spherical and rhombic Ti/Sb-SnO2 electrodes with enhanced electrochemical activity by colloidal electrodeposition. J. Electroanal. Chem., 2016, 768, 81.

[61]

Duan Y, Chen Y, Wen Q, Duan TG. Electrodeposition preparation of a cauliflower-like Sb-SnO2 electrode from DMSO solution for electrochemical dye decolorization. RSC Adv., 2016, 6(53): 48043.

[62]

Wagle DV, Zhao H, Baker GA. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res., 2014, 47(8): 2299.

[63]

Barışçı S, Turkay O, Öztürk H, Şeker MG. Anodic oxidation of phenol by mixed-metal oxide electrodes: Identification of transformation by-products and toxicity assessment. J. Electrochem. Soc., 2017, 164(7): E129.

[64]

Sun JR, Lu HY, Lin HB, Du LL, Huang WM, Li HD, Cui T. Electrochemical oxidation of aqueous phenol at low concentration using Ti/BDD electrode. Sep. Purif. Technol., 2012, 88, 116.

[65]

Li M, Feng CP, Hu WW, Zhang ZY, Sugiura N. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt. J. Hazard. Mater., 2009, 162(1): 455.

[66]

Sun ZR, Zhang H, Wei XF, Ma XY, Hu X. Preparation and electrochemical properties of SnO2-Sb-Ni-Ce oxide anode for phenol oxidation. J. Solid State Electrochem., 2015, 19(8): 2445.

[67]

Duan XY, Ma F, Yuan ZX, Chang LM, Jin XT. Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J. Taiwan Inst. Chem. Eng., 2013, 44(1): 95.

[68]

Wu MY, Ouyang YJ, Zhao K, Ma YM, Wang M, Liu DQ, Su YY, Jin PP. A novel fabrication method for titanium dioxide/activated carbon fiber electrodes and the effects of titanium dioxide on phenol degradation. J. Environ. Chem. Eng., 2016, 4(3): 3646.

[69]

J.J. Cai, M.H. Zhou, Y.W. Pan, X.D. Du, and X.Y. Lu, Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode, Appl. Catal. B, 257(2019), art. No. 117902.

[70]

Carvalho C, Fernandes A, Lopes A, Pinheiro H, Gonçalves I. Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment. Chemosphere, 2007, 67(7): 1316.

[71]

Zhang CY, Xian JH, Liu M, Fu DG. Formation of brominated oligomers during phenol degradation on boron-doped diamond electrode. J. Hazard. Mater., 2018, 344, 123.

[72]

El-Ghenymy A, Centellas F, Garrido JA, Rodríguez RM, Sirés I, Cabot PL, Brillas E. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim. Acta, 2014, 130, 568.

[73]

Martínez-Huitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B, 2009, 87(3–4): 105.

[74]

Wang ZC, Xu M, Wang FW, Liang X, Wei YJ, Hu YH, Zhu CG, Fang WY. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim. Acta, 2017, 247, 535.

[75]

Gao J, Yan J, Liu Y, Zhang J, Guo Z. A novel electro-catalytic degradation method of phenol wastewater with Ti/IrO2-Ta2O5 anodes in high-gravity fields. Water Sci. Technol., 2017, 76(3–4): 662.

[76]

G. Fadillah, T.A. Saleh, and S. Wahyuningsih, Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes, J. Mol. Liq., 289(2019), art. No. 111108.

[77]

Madsen HT, Søgaard EG, Muff J. Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration. Chem. Eng. J., 2015, 276, 358.

[78]

Da Silva LM, Gonçalves IC, Teles JJS, Franco DV. Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron Marine FG using an SPE filter-press reactor. Electrochim. Acta, 2014, 146, 714.

[79]

Vargas R, Díaz S, Viele L, Núñez O, Borrás C, Mostany J, Scharifker BR. Electrochemical oxidation of dichlorvos on SnO2-Sb2O5 electrodes. Appl. Catal. B, 2014, 144, 107.

[80]

Garcia-Segura S, Brillas E. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochim. Acta, 2014, 140, 384.

[81]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37.

[82]

Wang HH, Liu WX, Ma J, Liang Q, Qin W, Lartey PO, Feng XJ. Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation. Int. J. Miner. Metall. Mater., 2020, 27(6): 830.

[83]

Gao RQ, Sun Q, Fang Z, Li GT, Jia MZ, Hou XM. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation. Int. J. Miner. Metall. Mater., 2018, 25(1): 73.

[84]

Sadeghzadeh-Attar A. Photocatalytic degradation evaluation of N-Fe codoped aligned TiO2 nanorods based on the effect of annealing temperature. J. Adv. Ceram., 2020, 9(1): 107.

[85]

Meng YJ, Zhang LX, Jiu HF, Zhang QL, Zhang H, Ren W, Sun Y, Li DT. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity. Mater. Sci. Semicond. Process., 2019, 95, 35.

[86]

J.A. Villota-Zuleta, J.W. Rodríguez-Acosta, S.F. Castilla-Acevedo, N. Marriaga-Cabrales, and F. Machuca-Martínez, Experimental data on the photoelectrochemical oxidation of phenol: Analysis of pH, potential and initial concentration, Data Brief, 24(2019), art. No. 103949.

[87]

Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV. Degradation of phenol by synergistic chlorine-enhanced photo-assisted electrochemical oxidation. Chem. Eng. J., 2014, 240, 235.

[88]

Muddemann T, Haupt D, Sievers M, Kunz U. Electrochemical reactors for wastewater treatment. ChemBioEng Rev., 2019, 6(5): 142.

[89]

Martínez-Gutiérrez E, González-Márquez H, Martínez-Hernández S, Texier AC, Cuervo-López FDM, Gómez J. Effect of phenol and acetate addition on 2-chlorophenol consumption by a denitrifying sludge. Environ. Technol., 2012, 33(12): 1375.

[90]

Arellano-González M, González I, Texier AC. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes. J. Hazard. Mater., 2016, 314, 181.

[91]

Zhang XN, Huang WM, Wang X, Gao Y, Lin HB. Feasibility and advantage of biofilm-electrode reactor for phenol degradation. J. Environ. Sci., 2009, 21(9): 1181.

[92]

Li JW, Han X, Chai RX, Cheng FQ, Zhang M, Guo M. Metal-doped (Cu, Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst. Int. J. Miner. Metall. Mater., 2020, 27(7): 996.

[93]

Gümüş D, Akbal F. Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf. Environ. Prot., 2016, 103, 252.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/