Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding

Wen-rui Wang , Wu Qi , Xiao-li Zhang , Xiao Yang , Lu Xie , Dong-yue Li , Yong-hua Xiang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 888 -897.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 888 -897. DOI: 10.1007/s12613-020-2238-2
Article

Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding

Author information +
History +
PDF

Abstract

(CoCrFeNi)95Nb5 high entropy alloy (HEA) coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology. These (CoCrFeNi)95Nb5 HEA coatings possess excellent properties, particularly corrosion resistance, which is clearly superior to that of some typical bulk HEA and common engineering alloys. In order to obtain appropriate laser cladding preparation process parameters, the effects of laser energy density on the microstructure, microhardness, and corrosion resistance of (CoCrFeNi)95Nb5 HEA coating were closely studied. Results showed that as the laser energy density increases, precipitation of the Laves phase in (CoCrFeNi)95Nb5 HEA coating gradually decreases, and diffusion of the Fe element in the substrate intensifies, affecting the integrity of the (CoCrFeNi)95Nb5 HEA. This decreases the microhardness of (CoCrFeNi)95Nb5 HEA coatings. Moreover, the relative content of Cr2O3, Cr(OH)3, and Nb2O5 in the surface passive film of the coating decreases with increasing energy density, causing corrosion resistance to decrease. This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology, which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.

Keywords

high entropy alloy coating / laser cladding technology / laser energy density / corrosion resistance

Cite this article

Download citation ▾
Wen-rui Wang, Wu Qi, Xiao-li Zhang, Xiao Yang, Lu Xie, Dong-yue Li, Yong-hua Xiang. Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(5): 888-897 DOI:10.1007/s12613-020-2238-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Liang, J.W. Miao, B.Y. Gao, D.W. Deng, T.M. Wang, Y.P. Lu, Z.Q. Cao, H. Jiang, T.J. Li, and H.J. Kang, Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water, Surf. Coat. Technol., 400(2020), art. No. 126214.

[2]

Chen HX, Kong DJ. Effects of laser remelting speeds on microstructure, immersion corrosion, and electrochemical corrosion of arc-sprayed amorphous Al-Ti-Ni coatings. J. Alloys Compd., 2019, 771, 584.

[3]

Qiu XW, Liu CG. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloys Compd., 2013, 553, 216.

[4]

Li XR, Wang XT, Wang LY, Sun YY, Zhang BB, Li HL, Huang YL, Hou BR. Corrosion behavior of Q235 steel in atmospheres containing SO2 and NaCl. J. Mater. Eng. Perform., 2019, 28(4): 2327.

[5]

J.Y. Wang, B.S. Zhang, Y.Q. Yu, Z.J. Zhang, S.S. Zhu, X. Lou, and Z.Z. Wang, Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding, Surf. Coat. Technol., 384(2020), art. No. 125337.

[6]

Ndiithi NJ, Kang M, Zhu JP, Lin JR, Nyambura SM, Liu YT, Huang F. Microstructural and corrosion behavior of high velocity arc sprayed FeCrAl/Al composite coating on Q235 steel substrate. Coatings, 2019, 9(9): 542.

[7]

Ye QF, Feng K, Li ZG, Lu FG, Li RF, Huang J, Wu YX. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surf. Sci., 2017, 396, 1420.

[8]

He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater., 2014, 62, 105.

[9]

Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater., 2013, 61(7): 2628.

[10]

Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys, 2012, 132(2–3): 233.

[11]

Wang WR, Wang WL, Wang SC, Tsai YC, Lai CH, Yeh JW. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, 26, 44.

[12]

Zuo TT, Ren SB, Liaw PK, Zhang Y. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater., 2013, 20(6): 549.

[13]

Lei ZF, Liu XJ, Wu Y, Wang H, Jiang SH, Wang SD, Hui XD, Wu YD, Gault B, Kontis P, Raabe D, Gu L, Zhang QH, Chen HW, Wang HT, Liu JB, An K, Zeng QS, Nieh TG, Lu ZP. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546.

[14]

Wei CB, Du XH, Lu YP, Jiang H, Li TJ, Wang TM. Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties. Int. J. Miner. Metall. Mater., 2020, 27(10): 1312.

[15]

Du LM, Lan LW, Zhu S, Yang HJ, Shi XH, Liaw PK, Qiao JW. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol., 2019, 35(5): 917.

[16]

Shi YZ, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci., 2017, 119, 33.

[17]

S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, and Y. Yang, Corrosion resistant nanostructured eutectic high entropy alloy, Corros. Sci., 164(2020), art. No. 108315.

[18]

Chen T, Wu WN, Li WP, Liu DF. Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt. Laser Technol., 2019, 116, 345.

[19]

Zhang Y, Han TF, Xiao M, Shen YF. Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating. Int. J. Miner. Metall. Mater., 2020, 27(5): 630.

[20]

B.C. Li, H.M. Zhu, C.J. Qiu, and D.K. Zhang, Development of high strength and ductile martensitic stainless steel coatings with Nb addition fabricated by laser cladding, J. Alloys Compd., 832(2020), art. No. 154985.

[21]

M.Y. Ma, W.J. Xiong, Y. Lian, D. Han, C. Zhao, and J. Zhang, Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm, Surf. Coat. Technol., 381(2020), art. No. 125129.

[22]

He X, Song RG, Kong DJ. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding. Opt. Laser Technol., 2019, 112, 339.

[23]

Wang WR, Qi W, Xie L, Yang X, Li JT, Zhang Y. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying. Materials, 2019, 12(5): 694.

[24]

Yue TM, Xie H, Lin X, Yang HO, Meng GH. Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy, 2013, 15(7): 2833.

[25]

Celik E, Ozdemir I, Avci E, Tsunekawa Y. Corrosion behaviour of plasma sprayed coatings. Surf. Coat. Technol., 2005, 193(1–3): 297.

[26]

Cao L, Chen SY, Wei MW, Guo Q, Liang J, Liu CS, Wang M. Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel. Opt. Laser Technol., 2019, 111, 541.

[27]

Jiang H, Jiang L, Qiao DX, Lu YP, Wang TM, Cao ZQ, Li TJ. Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol., 2017, 33(7): 712.

[28]

Liu WH, He JY, Huang HL, Wang H, Lu ZP, Liu CT. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60, 1.

[29]

Curiotto S, Pryds NH, Johnson E, Battezzati L. Effect of cooling rate on the solidification of Cu58Co42. Mater. Sci. Eng. A, 2007, 449–451, 644.

[30]

Munitz A, Bamberger AM, Wannaparhun S, Abbaschian R. Effects of supercooling and cooling rate on the microstructure of Cu-Co-Fe alloys. J. Mater. Sci., 2006, 41(10): 2749.

[31]

Jiao XY, Wang J, Wang CM, Gong ZQ, Pang XX, Xiong SM. Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology. Opt. Lasers Eng., 2018, 110, 163.

[32]

Dai XQ, Zhou SF, Wang MF, Lei JB, Wang CX, Wang T. Microstructure evolution of phase separated Fe-Cu-Cr-C composite coatings by laser induction hybrid cladding. Surf. Coat. Technol., 2017, 324, 518.

[33]

Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou, and L.L. Wang, Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing, Corros. Sci., 177(2020), art. No. 108954.

[34]

W.R. Wang, J.Q. Wang, Z.H. Sun, J.T. Li, L.F. Li, X. Song, X.D. Wen, L. Xie, and X. Yang, Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100−xMo x high-entropy alloys, J. Alloys Compd., 812(2020), art. No. 152139.

[35]

Liu J, Liu H, Chen PJ, Hao JB. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding. Surf. Coat. Technol., 2019, 361, 63.

[36]

W. Yang, Y. Liu, S.J. Pang, P.K. Liaw, and T. Zhang, Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy, Intermetallics, 124(2020), art. No. 106845.

[37]

C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, H.F. Zhang, and J.Q. Wang, Microstructure and corrosion behavior of AlCoCrFeNiSi0.1 high-entropy alloy, Intermetallics, 114(2019), art. No. 106599.

[38]

Ayyagari A, Barthelemy C, Gwalani B, Banerjee R, Scharf TW, Mukherjee S. Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments. Mater. Chem. Phys., 2018, 210, 162.

[39]

Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis, Microstructural evolution, electrochemical and corrosion properties of Al xCoCrFeNiTi y high entropy alloys, Mater. Des., 170(2019), art. No. 107698.

[40]

Zhou QY, Sheikh S, Ou P, Chen DC, Hu Q, Guo S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions. Electrochem. Commun., 2019, 98, 63.

[41]

Kwok CT, Cheng FT, Man HC. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution. Mater. Sci. Eng. A, 2000, 290(1–2): 145.

[42]

Singh A, Lin YH, Obot IB, Ebenso EE, Ansari KR, Quraishi MA. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor. Appl. Surf. Sci., 2015, 356, 341.

[43]

Bao Q, Zhang D, Lv DD, Wang P. Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5wt% NaCl media. Corros. Sci., 2012, 65, 405.

[44]

Ramezanzadeh M, Sanaei Z, Bahlakeh G, Ramezanzadeh B. Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: Experimental, MD simulation and QM investigations. J. Mol. Liq, 2018, 256, 67.

[45]

Farhadi K, Zebhi H, Moghadam PN, Es’haghi M, Ashassi-Sorkhabi H. Electrochemical preparation of nano-colloidal polyaniline in polyacid matrix and its application to the corrosion protection of 430SS. Synth. Met., 2014, 195, 29.

[46]

Potgieter JH, Olubambi PA, Cornish L, Machio CN, Sherif E-S M. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros. Sci., 2008, 50(9): 2572.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/