Review and prospects of bioleaching in the Chinese mining industry

Sheng-hua Yin , Wei Chen , Xing-le Fan , Jia-ming Liu , Li-bo Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (9) : 1397 -1412.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (9) : 1397 -1412. DOI: 10.1007/s12613-020-2233-7
Invited Review

Review and prospects of bioleaching in the Chinese mining industry

Author information +
History +
PDF

Abstract

As the world’s second largest economy experiencing rapid economic growth, China has a huge demand for metals and energy. In recent years, China ranks first, among all the countries in the world, in the production and consumption of several metals such as copper, gold, and rare earth elements. Bioleaching, which is an approach for mining low grade and refractory ores, has been applied in industrial production, and bioleaching has made great contributions to the development of the Chinese mining industry. The exploration and application of bioleaching in China are reviewed in this study. Production and consumption trends of several metals in China over the past decade are reviewed. Technological processes at key bioleaching operations in China, such as at the Zijinshan Copper Mine and Mianhuakeng Uranium Mine, are presented. Also, the current challenges faced by bioleaching operations in China are introduced. Moreover, prospects such as efficiency improvement and environmental protection are proposed based on the current situation in the Chinese bioleaching industry.

Keywords

bioleaching / China / mining / copper / uranium / rare earth oxides / gold

Cite this article

Download citation ▾
Sheng-hua Yin, Wei Chen, Xing-le Fan, Jia-ming Liu, Li-bo Wu. Review and prospects of bioleaching in the Chinese mining industry. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(9): 1397-1412 DOI:10.1007/s12613-020-2233-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brierley CL, Brierley JA. Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol., 2013, 97(17): 7543.

[2]

Schaffartzik A, Mayer A, Eisenmenger N, Krausmann F. Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society’s skeleton. Ecol. Econ., 2016, 122, 101.

[3]

B.Q. Lin and B. Xu, How does fossil energy abundance affect China’s economic growth and CO2 emissions?, Sci. Total Environ., 719(2020), art. No. 137503.

[4]

Hermawan A, Asakura Y, Yin S. Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor. Int. J. Miner. Metall. Mater., 2020, 27(11): 1560.

[5]

Cholico-Gonzalez D, Lara NO, Miranda MAS, Estrella RM, Garcia RE, Patiño CAL. Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents. Int. J. Miner. Metall. Mater., 2021, 28(4): 603.

[6]

H. Mikulčić, J. Baleta, and J.J. Klemeš, Sustainability through combined development of energy, water and environment systems, J. Cleaner Prod., 251(2020), art. No. 119727.

[7]

Li P, Wang JJ, Wang Y, Liang JJ, He BH, Pan DQ, Fan QH, Wang XK. Photoconversion of U(VI) by TiO2: An efficient strategy for seawater uranium extraction. Chem. Eng. J., 2019, 365, 231.

[8]

Luo W, Xiao G, Tian F, Richardson JJ, Wang YP, Zhou JF, Guo JL, Liao XP, Shi B. Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ. Sci., 2019, 12(2): 607.

[9]

S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, and A.X. Wu, Copper bioleaching in China: Review and prospect, Minerals, 8(2018), No. 2, art. No. 32.

[10]

Y.T. Wang, L. Chen, Y.S. Yan, J. Chen, J.D. Dai, and X.H. Dai, Separation of adjacent heavy rare earth Lutetium(III) and Ytterbium(III) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane, J. Membr. Sci., 610(2020), art. No. 118263.

[11]

Long P, Wang GS, Zhang C, Yang YJ, Cao XJ, Shi ZB. Kinetics model for leaching of ion-adsorption type rare earth ores. J. Rare Earths, 2020, 38(12): 1354.

[12]

N. Dushyantha, N. Batapola, I.M.S.K. Ilankoon, S. Rohitha, R. Premasiri, B. Abeysinghe, N. Ratnayake, and K. Dissanayake, The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production, Ore Geol. Rev., 122(2020), art. No. 103521.

[13]

Sun XC, Yuan K, Zhang YW. Advances and prospects of rare earth metal-organic frameworks in catalytic applications. J. Rare Earths, 2020, 38(8): 801.

[14]

W.J. Weng, A. Biesiekierski, J.X. Lin, Y.C. Li, and C.E. Wen, Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti-24Nb-38Zr-2Mo alloy for medical applications, Materialia, 12(2020), art. No. 100772.

[15]

Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol., 2012, 46(6): 3406.

[16]

Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP. A greener approach for resource recycling: Manganese bioleaching. Chemosphere, 2016, 154, 628.

[17]

Govender E, Kotsiopoulos A, Bryan CG, Harrison STL. Modelling microbial transport in simulated low-grade heap bioleaching systems: The biomass transport model. Hydrometallurgy, 2014, 150, 299.

[18]

Fang X, Shen Y, Zhao J, Bao XM, Qu YB. Status and prospect of lignocellulosic bioethanol production in China. Bioresour. Technol., 2010, 101(13): 4814.

[19]

X.P. He and D.G. Mou, Impacts of mineral resources: Evidence from county economies in China, Energy Policy, 136(2020), art. No. 111088.

[20]

J. Lederer, A. Gassner, F. Kleemann, and J. Fellner, Potentials for a circular economy of mineral construction materials and demolition waste in urban areas: A case study from Vienna, Resour. Conserv. Recycl., 161(2020), art. No. 104942.

[21]

Glotov VE, Chlachula J, Glotova LP, Little E. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol., 2018, 245, 236.

[22]

China Geology Editorial Office. The report of China mineral resource reserves, 2018. China Geol., 2019, 2(2): 251.

[23]

Acevedo F, Gentina JC, Bustos S. Bioleaching of minerals—A valid alternative for developing countries. J. Biotechnol., 1993, 31(1): 115.

[24]

Wu AX, Yin SH, Qin WQ, Liu JS, Qiu GZ. The effect of preferential flow on extraction and surface morphology of copper sulphides during heap leaching. Hydrometallurgy, 2009, 95(1–2): 76.

[25]

Lu HJ, Qi CC, Chen QS, Gan DQ, Xue ZL, Hu YJ. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J. Cleaner Prod., 2018, 188, 601.

[26]

S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Cleaner Prod., 247(2020), art. No. 119590.

[27]

Kiventerä J, Perumal P, Yliniemi J, Illikainen M. Mine tailings as a raw material in alkali activation: A review. Int. J. Miner. Metall. Mater., 2020, 27(8): 1009.

[28]

Small CC, Cho S, Hashisho Z, Ulrich AC. Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates. J. Pet. Sci. Eng., 2015, 127, 490.

[29]

Dutta T, Kim KH, Uchimiya M, Kwon EE, Jeon BH, Deep A, Yun ST. Global demand for rare earth resources and strategies for green mining. Environ. Res., 2016, 150, 182.

[30]

Ojumu TV, Petersen J, Searby GE, Hansford GS. A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching. Hydrometallurgy, 2006, 83(1–4): 21.

[31]

Brierley JA. A perspective on developments in biohydrometallurgy. Hydrometallurgy, 2008, 94(1–4): 2.

[32]

Li SZ, Zhong H, Hu YH, Zhao JC, He ZG, Gu GH. Bioleaching of a low-grade nickel-copper sulfide by mixture of four thermophiles. Bioresour. Technol., 2014, 153, 300.

[33]

Rana S, Mishra P, Ab Wahid Z, Thakur S, Pant D, Singh L. Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid waste: A microbiological overview. J. Environ. Sci., 2020, 89, 47.

[34]

A.H. Kaksonen, A.M. Lakaniemi, and O.H. Tuovinen, Acid and ferric sulfate bioleaching of uranium ores: A review #, J. Cleaner Prod., 264(2020), art. No. 121586.

[35]

S. Dev, A. Sachan, F. Dehghani, T. Ghosh, B.R. Briggs, and S. Aggarwal, Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review, Chem. Eng. J., 397(2020), art. No. 124596.

[36]

Brierley JA, Brierley CL. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 2001, 59(2–3): 233.

[37]

Huang T, Li DW. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—A presentation. Biotechnol. Rep., 2014, 4, 107.

[38]

Ma Q, Feng ZG, Liu P, Lin XK, Li ZG, Chen MS. Uranium speciation and in situ leaching of a sandstone-type deposit from China. J. Radioanal. Nucl. Chem., 2017, 311(3): 2129.

[39]

Watling HR. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy, 2006, 84(1–2): 81.

[40]

Yang SR, Xie JY, Qiu GZ, Hu YH. Research and application of bioleaching and biooxidation technologies in China. Miner. Eng., 2002, 15(5): 361.

[41]

W. Chen, S.H. Yin, A.X. Wu, L.M. Wang, and X. Chen, Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater, Bioresour. Technol., 297(2020), art. No. 122453.

[42]

Haque N, Norgate T. The greenhouse gas footprint of in situ leaching of uranium, gold and copper in Australia. J. Cleaner Prod., 2014, 84, 382.

[43]

Pradhan N, Nathsarma KC, Srinivasa Rao K, Sukla LB, Mishra BK. Heap bioleaching of chalcopyrite: A review. Miner. Eng., 2008, 21(5): 355.

[44]

Chen W, Yin SH, Qi Y, Chen X, Wang LM. Effect of additives on bioleaching of copper sulfide ores. J. Cent. South Univ. Sci. Technol., 2019, 50(7): 1507

[45]

S.H. Yin, W. Chen, X. Chen, and L.M. Wang, Bacterial-mediated recovery of copper from low-grade copper sulphide using acid-processed rice straw, Bioresour. Technol., 288(2019), art. No. 121605.

[46]

S.H. Yin, W. Chen, and I.M.S.K. Ilankoon, Effects of forced aeration on community dynamics of free and attached bacteria in copper sulfide ore bioleaching, Int. J. Miner. Metall. Mater., (2020). DOI: https://doi.org/10.1007/s12613-020-2125-x

[47]

Zhao HB, Wang J, Hu MH, Qin WQ, Zhang YS, Qiu GZ. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans. Bioresour. Technol., 2013, 149, 71.

[48]

Liu XY, Chen BW, Chen JH, Zhang MJ, Wen JK, Wang DZ, Ruan RM. Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant. Miner. Eng., 2016, 94, 76.

[49]

Dong YB, Li H, Lin H, Zhang Y. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction. Int. J. Miner. Metall. Mater., 2017, 24(4): 369.

[50]

Liu Y, Yin HQ, Zeng WM, Liang YL, Liu Y, Baba N, Qiu GZ, Shen L, Fu X, Liu XD. The effect of the introduction of exogenous strain Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching. Bioresour. Technol., 2011, 102(17): 8092.

[51]

Xu SX, Zhang SM, Wang HQ, Xie HL, Wu K. Adsorption of rare earth ions by phanerochaete chrysosporium 210. J. Chin. Soc. Rare Earths, 2010, 28(2): 225

[52]

Wu AX, Yin SH, Wang HJ, Qin WQ, Qiu GZ. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation. Bioresour. Technol., 2009, 100(6): 1931.

[53]

Yin SH, Chen W, Liu JM, Song Q. Agglomeration experiment of secondary copper sulfide ore. Chin. J. Eng., 2019, 41(9): 1127

[54]

W. Du, The impact of in-situ leaching on natural environment of ion-type rare earth mine, Jiangxi Nonferrous Metal., 2001, No. 1, p. 41.

[55]

Sheshpari M. A review of underground mine backfilling methods with emphasis on cemented paste backfill. Electron. J. Geotech. Eng., 2015, 20(13): 5183

[56]

McBride D, Ilankoon IMSK, Neethling SJ, Gebhardt JE, Cross M. Preferential flow behaviour in unsaturated packed beds and heaps: Incorporating into a CFD model. Hydrometallurgy, 2017, 171, 402.

[57]

Yang BH, Wu AX, Jiang HC, Chen XS. Evolvement of permeability of ore granular media during heap leaching based on image analysis. Trans. Nonferrous Met. Soc. China, 2008, 18(2): 426.

[58]

Yin SH, Wang LM, Chen X, Wu AX. Effect of ore size and heap porosity on capillary process inside leaching heap. Trans. Nonferrous Met. Soc. China, 2016, 26(3): 835.

[59]

Qin WQ, Yang CR, Lai SS, Wang J, Liu K, Zhang B. Bioleaching of chalcopyrite by moderately thermophilic microorganisms. Bioresour. Technol., 2013, 129, 200.

[60]

Nagpal S, Dahlstrom D, Oolman T. Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate. Biotechnol. Bioeng., 1993, 41(4): 459.

[61]

Muñoz JA, Dreisinger DB, Cooper WC, Young SK. Silver-catalyzed bioleaching of low-grade copper ores.: Part I: Shake flasks tests. Hydrometallurgy, 2007, 88(1–4): 3.

[62]

Wu AX, Yin SH, Yang BH, Wang J, Qiu GZ. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3–4): 124.

[63]

Yin SH, Wu AX, Hu KJ, Wang YM, Xue ZL. Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions. Hydrometallurgy, 2013, 133, 1.

[64]

Dong YB, Lin H, Xu XF, Zhang Y, Gao YJ, Zhou SS. Comparative study on the bioleaching, biosorption and passivation of copper sulfide minerals. Int. Biodeterior. Biodegrad., 2013, 84, 29.

[65]

Wang J, Gan XW, Zhao HB, Hu MH, Li KY, Qin WQ, Qiu GZ. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis. Miner. Eng., 2016, 98, 264.

[66]

Panda S, Akcil A, Pradhan N, Deveci H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol., 2015, 196, 694.

[67]

Diao MX, Taran E, Mahler S, Nguyen AV. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. Adv. Colloid Interface Sci., 2014, 212, 45.

[68]

Boxall NJ, Rea SM, Li J, Morris C, Kaksonen AH. Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community. Hydrometallurgy, 2017, 168, 32.

[69]

Deng S, Gu GH, Wu ZT, Xu XY. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Chemosphere, 2017, 185, 403.

[70]

China Nonferrous Metals Industry Association, Production of metals, China Nonferrous Metals Industry Association, Beijing [2019-12-18] https://www.chinania.org.cn/html/hangyetongji/chanyeshuju/

[71]

World Nuclear Association, World Uranium Mining Production, World Nuclear Association, London [2020-07-04]. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx

[72]

World Nuclear Association, Nuclear Power in China, World Nuclear Association, London [2020-07-04]. https://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx

[73]

Zhang RY, Wei DZ, Shen YB, Liu WG, Lu T, Han C. Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Miner. Eng., 2016, 95, 74.

[74]

Ministry of Industry and Information Technology of the People’s Republic of China and Ministry of Natural Resources of the People’s Republic of China, Notice on Issuing the First Batch of Total Amount Control Plan for Rare Earth Mining, Smelting and Separation in 2019, Ministry of Industry and Information Technology of the people’s Republic of China and Ministry of Natural Resources of the People’s Republic of China, Beijing [2019-03-15]. https://wap.miit.gov.cn/jgsj/ycls/xt/art/2020/art_ba89d18cb633481083e68c92f75dc141.html

[75]

Weng ZH, Jowitt SM, Mudd GM, Haque N. A detailed assessment of global rare earth element resources: Opportunities and challenges. Econ. Geol., 2015, 110(8): 1925.

[76]

Lei S, Na W, Shuai Z, Li G. Overview on China’s rare earth industry restructuring and regulation reforms. J. Resour. Ecol., 2017, 8(3): 213

[77]

Weng ZH, Haque N, Mudd GM, Jowitt SM. Assessing the energy requirements and global warming potential of the production of rare earth elements. J. Cleaner Prod., 2016, 139, 1282.

[78]

China Gold Association, Industry Statistics, China Gold Association, Beijing [2020-10-27]. http://www.cngold.org.cn/stats.aspx

[79]

Zhou HB, Zeng WM, Yang ZF, Xie YJ, Qiu GZ. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour. Technol., 2009, 100(2): 515.

[80]

Panda S, Biswal A, Mishra S, Panda PK, Pradhan N, Mohapatra U, Sukla LB, Mishra BK, Akcil A. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy. Hydrometallurgy, 2015, 153, 98.

[81]

He ZG, Xie XH, Xiao SM, Liu JS, Qiu GZ. Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. J. Basic Microbiol., 2007, 47(6): 485.

[82]

Dai ZM, Yin HQ, Zeng XX, Liu XD. Comparison of microbial community of acid mine drainage from Dongchuan copper pyrite. Prog. Mod. Biomed., 2007, 7(11): 1608

[83]

Zhan J, Sun QY. Development of microbial properties and enzyme activities in copper mine wasteland during natural restoration. CATENA, 2014, 116, 86.

[84]

Hao XD, Liang YL, Yin HQ, Ma LY, Xiao YH, Liu YZ, Qiu GZ, Liu XD. The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures. Miner. Eng., 2016, 98, 279.

[85]

Yin SH, Wang LM, Wu AX, Chen X, Yan RF. Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities. Int. J. Miner. Metall. Mater., 2019, 26(11): 1337.

[86]

Ruan RM, Wen JK, Chen JH. Bacterial heap-leaching: Practice in Zijinshan copper mine. Hydrometallurgy, 2006, 83(1–4): 77

[87]

Liu J, Fan BT, Meng YS, Zheng Y, Liu C, Zhou L. Practice and prospect on bioleaching of uranium ore in China. Uranium Min. Metall., 2008, 27(3): 118

[88]

Ruan RM, Liu XY, Zou G, Chen JH, Wen JK, Wang DZ. Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy, 2011, 108(1–2): 130.

[89]

Ruan RM, Zou G, Zhong SP, Wu ZL, Chan B, Wang DZ. Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity—Study on leaching kinetics of copper sulfides and its implications. Miner. Eng., 2013, 48, 36.

[90]

J.T. Yuan and Z.X. Sun, Development and prospects of the bacterial leaching uranium technology, China Min. Mag., 2008, No. 6, p. 45.

[91]

X. Sun, Application of bioleaching technology in uranium heap leaching, Sci. Technol. Inf., 2009, No. 32, p. 5.

[92]

T.J. Wang, Application of bioleaching technology in uranium mining, Jiangxi Chem. Ind., 2019, No. 3, p. 20.

[93]

Fan QS, Chen QG. The microbial technology applied in the heap leaching of low-grade uranium ore. Rare Met. Cem. Carbides, 2009, 37(1): 45

[94]

Liu JH, Zhou YP, Liu YJ, Sun ZX, Shi WJ, Hu BQ. The new progress of uranium biology in-site leaching. China Min. Mag., 2012, 21(S1): 262

[95]

Liu XY, Chen BW, Wen JK. Dominance of Acidithiobacillus at ore surface of Zijinshan commercial low-grade copper bioleaching heap. Trans. Nonferrous Met. Soc. China, 2008, 18(6): 1506.

[96]

M.X. Yang and G.J. She, Research history and status of bioleaching of uranium, China High-tech Enterp., 2009, No. 15, p. 5.

[97]

Chen X, Liao DH. Study on bacteria leaching mechanism of uranium ore and status quo of appliation at home and abroad. China Res. Compr. Util., 2012, 30(1): 34

[98]

Liu XL, Zhao ZY, Gui ZX, Gong AJ. Overview of microbial technology in the utilization of rare earth resources. Chin. J. Eng., 2020, 42(1): 60

[99]

Dai YH, Yang HL, Zhuo GW, Gong LL, Hu Y. Bioleaching technology and its application in three rare mineral resources. Shandong Chem. Ind., 2017, 46(11): 60

[100]

Long P, Wang GS, Zhang S, Hu SL, Huang Y. A mathematical model for column leaching of ion adsorption-type rare earth ores. Int. J. Miner. Metall. Mater., 2020, 27(4): 463.

[101]

Qu Y, Lian B. Bioleaching of rare earth and radioactive elements from red mud using Penicilliumtricolor RM-10. Bioresour. Technol., 2013, 136, 16.

[102]

Li SJ, He J, Yi CH, Li YK. The study of using waste brewer’s yeast as a new sorbent for accumulation of lanthanides. J. Sichuan Uni. Nat. Sci. Ed., 1996, 33(5): 568

[103]

Zeng WM, Qiu GZ, Zhou HB, Peng JH, Chen M, Tan SN, Chao WL, Liu XD, Zhang YS. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate. Bioresour. Technol., 2010, 101(18): 7068.

[104]

Li SY, Fu HJ, Dong W. Research progress on the interaction of microorganisms and rare earth. J. Jiangxi Univ. Sci. Technol., 2017, 38(3): 56

[105]

Liu Z, Yang SB, Song XM, Nian XJ, Zhang H. Development of bio-oxidation pretreatment of refractory gold ores. Hydrometall. China, 2010, 29(1): 9

[106]

Li JF, Yang HY, Tong LL, Jin ZN, Zhang DC. Experimental study on bacterial oxidation-gold extraction of Paodaoling refractory gold concentrate. Gold Sci. Technol., 2018, 26(2): 248

[107]

Wang S, Li C, Li HX. Research progress of pretreatment technologies of refractory gold ores. Gold Sci. Technol., 2014, 22(4): 129

[108]

Yin WZ, Hong ZX, Ma YQ, Li Q. Research progress of pretreatment technology for as, S-bearing gold ore concentrate at home and abroad. Mod. Min., 2011, 27(2): 1

[109]

Cui RC, Yang HY, Fu Y, Chen S, Zhang S. Biooxidation-cyanidation leaching of gold concentrates with different arsenic types. Chin. J. Nonferrous Met., 2011, 21(3): 694

[110]

X.J. Tian, D.P. Du, L.E. Peng, and X.H. Li, Bacterial leaching of gold ore, Geol. China, 2008, No. 3, p. 557.

[111]

Ma PC, Yang HY, Han ZQ. Column bioleaching of low-grade primary gold ore. J. Northeast. Univ. Nat. Sci., 2012, 33(6): 857

[112]

S.L. Zhang, J.Y. Liu, L.H. Yang, S.Y. Du, and Z.L. Wu, Bioleaching of Copper-cobalt-nickel polymetallic sulfide ores in Jilin, Multipurpos. Util. Miner. Re., 2020, No. 1, p. 50.

[113]

Zhao SJ, Weng Y, Xiao C. Review on bioleaching of nickel/cobalt sulfide ore. Hunan Nonferrous Met., 2011, 27(6): 10

[114]

Dong FQ, Xu LH, Dai QW, Chen S, Liu MX. New progress in investigation on bioleaching of low-grade nickel-cobalt oxidized ore. Earth Environ., 2013, 41(4): 358

[115]

Zhao HF, Yang HY, Tong LL, Zhang Q, Kong Y. Biooxidation-thiosulfate leaching of refractory gold concentrate. Int. J. Miner. Metall. Mater., 2020, 27(8): 1075.

[116]

J. Liu, Y. Zheng, Y.S. Meng, and L. Zhou, Experimental investigation on bioleaching of low-grade cobalt ore, Hydrometall. China, 2008, No. 3, p. 148.

[117]

Liu W, Yang HY, Tong LL, Chen GB, Jin ZN. Effect of preconditioning of acid leaching-gravity separation on cobalt ore bioleaching. J. Mater. Metall., 2015, 14(2): 126

[118]

Liu W, Zhang SJ, Sun F, Huang HF, Liu C. Effect of silver ion on bioleaching of cobalt ore. Min. Metall. Eng., 2019, 39(1): 82

[119]

Liu X, Song YS, Wen JK. Dissolution behavior of arsenic-bearing complex nickel sulfide ores at low-temperature by bacteria leaching. Chin. J. Rare Met., 2014, 38(6): 1127

[120]

J.Q. Wang, Q. Yan, C.L. Liang, and X.P. Luo, Research progress in bioleaching of nickel sulphide ore, Metal Mine, 2015, No. 8, p. 85.

[121]

Li X, Gao WC, Wen JK, Wu B, Liu X. Technology status and research progress of zinc bioleaching. Chin. J. Eng., 2020, 42(6): 693

[122]

Zhao HB, Zhang YS, Zhang X, Qian L, Sun ML, Yang Y, Zhang YS, Wang J, Kim H, Qiu GZ. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Miner. Eng., 2019, 136, 140.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/