Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III)

Zhen Xue , Zhen-yuan Nie , Hong-chang Liu , Wei-bo Ling , Qian Pan , Jin-lan Xia , Lei Zheng , Chen-yan Ma , Yi-dong Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1135 -1144.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1135 -1144. DOI: 10.1007/s12613-020-2231-9
Article

Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III)

Author information +
History +
PDF

Abstract

Understanding bacterial adsorption and the evolution of biofilms on arsenopyrite with different surface structures is of great significance to clarifying the mechanism of microbe-mineral interfacial interactions and the production of acidic mine drainage impacting the environment. In this study, the attachment of Sulfobacillus thermosulfidooxidans cells and subsequent biofilm formation on arsenopyrite with different surface structures in the presence of dissolved As(III) was studied. Arsenopyrite slices with a specific surface were obtained by electrochemical corrosion at 0.26 V. The scanning electronic microscopy-energy dispersion spectra analyses indicated that the arsenopyrite surface deficient in sulfur and iron obtained by electrochemical treatment was not favorable for the initial adsorption of bacteria, and the addition of As(III) inhibited the adsorption of microbial cells. Epifluorescence microscopy showed that the number of cells attaching to the arsenopyrite surface increased with time; however, biofilm formation was delayed significantly when As(III) was added.

Keywords

arsenopyrite / surface microstructure / bioleaching / sulfobacillus thermosulfidooxidans / attachment behaviors

Cite this article

Download citation ▾
Zhen Xue, Zhen-yuan Nie, Hong-chang Liu, Wei-bo Ling, Qian Pan, Jin-lan Xia, Lei Zheng, Chen-yan Ma, Yi-dong Zhao. Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III). International Journal of Minerals, Metallurgy, and Materials, 2021, 28(7): 1135-1144 DOI:10.1007/s12613-020-2231-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Corkhill CL, Vaughan DJ. Arsenopyrite oxidation—A review. Appl. Geochem., 2009, 24(12): 2342.

[2]

Miller DM, Hansford GS. Batch biooxidation of a gold-bearing pyrite-arsenopyrite concentrate. Miner. Eng., 1992, 5(6): 613.

[3]

Espiell F, Roca A, Cruells M, Núñez C. Gold and silver recovery by cyanidation of arsenopyrite ore. Hydrometallurgy, 1986, 16(2): 141.

[4]

Watling HR. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy, 2006, 84(1–2): 81.

[5]

Wang SF, Jiao BB, Zhang MM, Zhang GQ, Wang X, Jia YF. Arsenic release and speciation during the oxidative dissolution of arsenopyrite by O2 in the absence and presence of EDTA. J. Hazard. Mater., 2018, 346, 184.

[6]

Liu JS, Wang ZH, Gen MM, Qiu GZ. Progress in the study of polyphase interfacial interactions between microorganism and mineral in bio-hydrometallurgy. Min. Metall. Eng., 2006, 26(1): 40

[7]

W.B. Ling, L. Wang, H.C. Liu, Z.Y. Nie, Y. Yang, Y. Yang, C.Y. Ma, L. Zheng, Y.D. Zhao, and J.L. Xia, The evidence of decisive effect of both surface microstructure and speciation of chalcopyrite on attachment behaviors of extreme thermoacidophile sulfolobus metallicus, Minerals, 8(2018), No. 4, art. No. 159.

[8]

Vander Voort G. Color metallography. Microsc. Microanal., 2004, 10(S02): 70.

[9]

Zhang RY, Neu TR, Bellenberg S, Kuhlicke U, Sand W, Vera M. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Microb. Biotechnol., 2015, 8(3): 448.

[10]

Vera M, Schippers A, Sand W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl. Microbiol. Biotechnol., 2013, 97(17): 7529.

[11]

Xia JL, Zhu HR, Wang L, Liu HC, Nie ZY, Zhao YD, Ma CY, Hong CH, Zhen XJ. In situ characterization of relevance of surface microstructure and electrochemical properties of chalcopyrite to adsorption of Acidianus manzaensis. Adv. Mater. Res., 2015, 1130, 183.

[12]

Price DW, Warren GW. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid. Hydrometallurgy, 1986, 15(3): 303.

[13]

Sand W, Gehrke T, Jozsa PG, Schippers A. (Bio)hemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy, 2001, 59(2–3): 159.

[14]

Lara RH, García-Meza JV, González I, Cruz R. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl. Microbiol. Bio-technol., 2013, 97(6): 2711.

[15]

Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, Cruz R, García-Meza JV. Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometallurgy, 2010, 103(1–4): 35.

[16]

Ramírez-Aldaba H, Vázquez-Arenas J, Sosa-Rodríguez FS, Valdez-Pérez D, Ruiz-Baca E, Trejo-Córdoba G, Escobedo-Bretado MA, Lartundo-Rojas L, Ponce-Peña P, Lara RH. Changes in biooxidation mechanism and transient biofilm characteristics by As(V) during arsenopyrite colonization with Acidithiobacillus thiooxidans. J. Ind. Microbiol. Biotechnol., 2018, 45(8): 669.

[17]

Yee N, Fein JB, Daughney CJ. Experimental study of the pH. ionic strength.and reversibility behavior of bacteria-mineral adsorption. Geochim. Cosmochim. Acta, 2000, 64(4): 609.

[18]

Koechler S, Farasin J, Cleiss-Arnold J, Arsène-Ploetze F. Toxic metal resistance in biofilms: Diversity of microbial responses and their evolution. Res. Microbiol., 2015, 166(10): 764.

[19]

Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environ. Microbiol., 2004, 6(12): 1220.

[20]

Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, Shah M, Hettich RL, Banfield JF. Community proteomics of a natural microbial biofilm. Science, 2005, 308(5730): 1915.

[21]

Geochim. Cosmochim. Acta. Is arsenic biotransformation a detoxification mechanism for microorganisms?. Aquat. Toxicol., 2014, 146, 212.

[22]

Liu HC. Study on the Interfacial Interactions Between Bioleaching Microorganisms and Sulfur-Containing Substrates and Their Molecular Mechanism, 2016, Changsha, Central South University, 82

[23]

Zhang DR, Xia JL, Nie ZY, Chen HR, Liu HC, Deng Y, Zhao YD, Zhang LL, Wen W, Yang HY. Mechanism by which ferric iron promotes the bioleaching of arsenopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans. Process. Biochem., 2019, 81, 11.

[24]

D.R. Zhang, H.R. Chen, J.L. Xia, Z.Y. Nie, X.L. Fan, H.C. Liu, L. Zheng, L.J. Zhang, and H.Y. Yang, Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization, J. Hazard. Mater., 384(2020), art. No. 121359.

[25]

Li Q, Zhang RY, Krok BA, Vera M, Sand W. Biofilm formation of Sulfobacillus thermosulfidooxidans on pyrite in the presence of Leptospirillum ferriphilum. Adv. Mater. Res., 2015, 1130, 141.

[26]

Gu TY, Rastegar SO, Mousavi SM, Li M, Zhou MH. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol., 2018, 261, 428.

[27]

Stetter KO, Segerer A, Zillig W, Huber G, Fiala G, Huber R, König H. Extremely thermophilic sulfur-metabolizing archaebacteria. Syst. Appl. Microbiol., 1986, 7(2–3): 393.

[28]

Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev., 1997, 20(3–4): 591.

[29]

Liang CL, Xia JL, Yang Y, Nie ZY, Zhao XJ, Zheng L, Ma CY, Zhao YD. Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy. Hydrometallurgy, 2011, 107(1–2): 13.

[30]

Castro C, Zhang RY, Liu J, Bellenberg S, Neu TR, Donati E, Sand W, Vera M. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spand Sulfolobus metallicus. Res. Microbiol., 2016, 167(7): 604.

[31]

A. Koerdt, J. Gödeke, J. Berger, K.M. Thormann, and S.V. Albers, Crenarchaeal biofilm formation under extreme conditions, PLoS One, 5(2010), No. 11, art. No. e14104.

[32]

de Africa CJ, van Hille RP, Sand W, Harrison STL. Investigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment. Miner. Eng., 2013, 48, 100.

[33]

Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ. Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int. J. Miner. Process., 2010, 94(1–2): 52.

[34]

Ide-Ektessabi A, Kawakami T, Watt F. Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams. Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 213, 590.

[35]

Ravel B, Newville M. Athena, Artemis, Hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat., 2005, 12(4): 537.

[36]

Noël N, Florian B, Sand W. AFM & EFM study on attachment of acidophilic leaching organisms. Hydrometallurgy, 2010, 104(3–4): 370.

[37]

Zhang RY, Vera M, Bellenberg S, Sand W. Attachment to minerals and biofilm development of extremely acidophilic archaea. Adv. Mater. Res., 2013, 825, 103.

[38]

Fernandez MGM, Mustin C, de Donato P, Barres O, Marion P, Berthelin J. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans. Biotechnol. Bioeng., 1995, 46(1): 13.

[39]

Donlan RM. Biofilms: microbial life on surfaces. Emerg. Infect. Dis., 2002, 8(9): 881.

[40]

Echeverría-Vega A, Demergasso C. Copper resistance, motility and the mineral dissolution behavior were assessed as novel factors involved in bacterial adhesion in bioleaching. Hydrometallurgy, 2015, 157, 107.

[41]

Ramírez-Aldaba H, Valles OP, Vazquez-Arenas J, Rojas-Contreras JA, Valdez-Pérez D, Ruiz-Baca E, Meraz-Rodríguez M, Sosa-Rodríguez FS, Rodríguez G, Lara RH. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic. Sci. Total Environ., 2016, 566–567, 1106.

[42]

Leng FF, Li KY, Zhang XX, Li YQ, Zhu Y, Lu JF, Li HY. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy, 2009, 98(3–4): 235.

[43]

Jin J, Shi SY, Liu GL, Zhang QH, Cong W. Arsenopyrite bioleaching by Acidithiobacillus ferrooxidans in a rotating-drum reactor. Miner. Eng., 2012, 39, 19.

[44]

Zhang RY, Bellenberg S, Castro L, Neu TR, Sand W, Vera M. Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum. Hydrometallurgy, 2014, 150, 245.

[45]

Dave SR, Gupta KH, Tipre DR. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Bioresour. Technol., 2008, 99(16): 7514.

[46]

Hallberg KB, Sehlin HM, Lindström EB. Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite. Appl. Microbiol. Biotechnol., 1996, 45(1–2): 212.

[47]

Escobar B, Huenupi E, Godoy I, Wiertz JV. Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70°C. Biotechnol. Lett., 2000, 22(3): 205.

[48]

Jia CY, Wei DZ, Liu WG, Han C, Gao SL, Wang YJ. Selective adsorption of bacteria on sulfide minerals surface. Trans. Nonferrous Met. Soc. China, 2008, 18(5): 1247.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/