In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels
Chao Gu , Wen-qi Liu , Jun-he Lian , Yan-ping Bao
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 826 -834.
In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels
A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions. Fatigue mechanisms were also analyzed accordingly. The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix. For the inclusions, which are tightly bonded with the steel matrix, when the Young’s modulus is larger than that of the steel matrix, the stress will concentrate inside the inclusion; otherwise, the stress will concentrate in the steel matrix. If voids exist on the interface between inclusions and the steel matrix, their effects on the fatigue process differ with their positions relative to the inclusions. The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration. The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix.
inclusion / high-strength bearing steel / fatigue / numerical study / stress distribution
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
W. Xiao, M. Wang, and Y.P. Bao, The research of low-oxygen control and oxygen behavior during RH process in silicondeoxidization bearing steel, Metals, 9(2019), No. 8, art. No. 812. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
U. Karr, Y. Sandaiji, R. Tanegashima, S. Murakami, B. Schönbauer, M. Fitzka, and H. Mayer, Inclusion initiated fracture in spring steel under axial and torsion very high cycle fatigue loading at different load ratios, Int. J. Fatigue, 134(2020), art. No. 105525. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158. |
| [32] |
|
| [33] |
W.Q. Liu, J.H. Lian, N. Aravas, and S. Münstermann, A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel, Int. J. Plast., 126(2020), art. No. 102614. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
/
| 〈 |
|
〉 |