Powder metallurgy of high-entropy alloys and related composites: A short review

Bo-ren Ke , Yu-chen Sun , Yong Zhang , Wen-rui Wang , Wei-min Wang , Pei-yan Ma , Wei Ji , Zheng-yi Fu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 931 -943.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 931 -943. DOI: 10.1007/s12613-020-2221-y
Invited Review

Powder metallurgy of high-entropy alloys and related composites: A short review

Author information +
History +
PDF

Abstract

High-entropy alloys (HEAs) have attracted increasing attention because of their unique properties, including high strength, hardness, chemical stability, and good wear resistance. Powder metallurgy is one of the most important methods used to fabricate HEA materials. This paper introduces the methods used to synthesize HEA powders and consolidate HEA bulk. The phase transformation, microstructural evolution, and mechanical properties of HEAs obtained by powder metallurgy are summarized. We also address HEA-related materials such as ceramic-HEA cermets and HEA-based composites fabricated by powder metallurgy.

Keywords

high-entropy alloys / powder metallurgy / mechanical alloying / consolidation

Cite this article

Download citation ▾
Bo-ren Ke, Yu-chen Sun, Yong Zhang, Wen-rui Wang, Wei-min Wang, Pei-yan Ma, Wei Ji, Zheng-yi Fu. Powder metallurgy of high-entropy alloys and related composites: A short review. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 931-943 DOI:10.1007/s12613-020-2221-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW. Recent progress in high-entropy alloys. Eur. J. Control, 2006, 31(6): 633

[2]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[3]

Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater., 2013, 61(7): 2628.

[4]

Zaddach AJ, Scattergood RO, Koch CC. Tensile properties of low-stacking fault energy high-entropy alloys. Mater. Sci. Eng. A, 2015, 636, 373.

[5]

Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater., 2012, 60(16): 5723.

[6]

Youssef KM, Zaddach AJ, Niu CN, Irving DL, Koch CC. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett., 2015, 3(2): 95.

[7]

Yao CZ, Zhang P, Liu M, Li GR, Ye JQ, Liu P, Tong YX. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim. Acta, 2008, 53(28): 8359.

[8]

Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[9]

F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys, Phys. Rev. Lett., 116(2016), No. 13, art. No. 135504.

[10]

Liu JP, Guo XX, Lin QY, He ZB, An XH, Li LF, Liaw PK, Liao XZ, Yu LP, Lin JP, Xie L, Ren JL, Zhang Y. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Sci. China Mater., 2019, 62(6): 853.

[11]

Zhang KB, Fu ZY, Zhang JY, Wang WM, Wang H, Wang YC, Zhang QJ, Shi J. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A, 2009, 508(1–2): 214.

[12]

Zhang KB, Fu ZY, Zhang JY, Shi J, Wang WM, Wang H, Wang YC, Zhang QJ. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys Compd., 2010, 502(2): 295.

[13]

Zhang KB, Fu ZY. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics, 2012, 22, 24.

[14]

Zhang KB, Fu ZY. Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics, 2012, 28, 34.

[15]

Gao MC, Yeh JW, Liaw PK, Zhang Y. High-Entropy Alloys: Fundamentals and Applications, 2016, Cham, Springer

[16]

German RM. Powder Metallurgy Science, 1994, 2nd ed., New Jersey, Princeton, Metal Powder Industries Federation

[17]

Hausner HH. Modern Developments in Powder Metallurgy, 1966, Boston, Springer

[18]

Ma PY, Zhang SC, Zhang MT, Gu JF, Zhang L, Sun YC, Ji W, Fu ZY. Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction. Sci. China Mater., 2020, 63(12): 2613.

[19]

Ma PY, Zhao MM, Zhang L, Wang H, Gu JF, Sun YC, Ji W, Fu ZY. Self-supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition. J. Materiomics, 2020, 6(4): 736.

[20]

Vaidya M, Muralikrishna GM, Murty BS. High-entropy alloys by mechanical alloying: A review. J. Mater. Res., 2019, 34(5): 664.

[21]

P.A. Kumar and C.S. Perugu, Synthesis of FeCrVNbMn high entropy alloy by mechanical alloying and study of their microstructure and mechanical properties, [in] The Minerals, Metals & Materials Society, ed., TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, Phoenix, Arizona, 2018, p. 669.

[22]

Suryanarayana C, Froes FH. Nanocrystalline titanium-magnesium alloys through mechanical alloying. J. Mater. Res., 1990, 5(9): 1880.

[23]

Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd., 2008, 460(1–2): 253.

[24]

Varalakshmi S, Kamaraj M, Murty BS. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A, 2010, 527(4–5): 1027.

[25]

Chen YL, Hu YH, Tsai CW, Hsieh CA, Kao SW, Yeh JW, Chin TS, Chen SK. Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying. J. Alloys Compd., 2009, 477(1–2): 696.

[26]

Zhang KB, Fu ZY, Zhang JY, Shi J, Wang WM, Wang H, Wang YC, Zhang QJ. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd., 2009, 485(1–2): L31.

[27]

Zhang KB, Fu ZY, Zhang JY, Wang WM, Lee SW, Niihara K. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd., 2010, 495(1): 33.

[28]

Ji W, Fu ZY, Wang WM, Wang H, Zhang JY, Wang YC, Zhang F. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd., 2014, 589, 61.

[29]

Ji W, Wang WM, Wang H, Zhang JY, Wang YC, Zhang F, Fu ZY. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 2015, 56, 24.

[30]

Wang C, Ji W, Fu ZY. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol., 2014, 25(4): 1334.

[31]

Y.C. Sun, B.R. Ke, Y.L. Li, K. Yang, M.Q. Yang, W. Ji, and Z.Y. Fu, Phases, microstructures and mechanical properties of CoCrNiCuZn high-entropy alloy prepared by mechanical alloying and spark plasma sintering, Entropy, 21(2019), No. 2, art. No. 122.

[32]

Niu B, Ji W, Li N, Zhang F, Wu Y. Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying. Mater. Sci. Technol., 2016, 32(1): 94.

[33]

S. Das and P.S. Robi, Mechanical alloying of W-Mo-V-Cr-Ta high entropy alloys, IOP Conf. Ser.: Mater. Sci. Eng., 346(2018), art. No. 012047.

[34]

Pan JY, Dai T, Lu T, Ni XY, Dai JW, Li M. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A, 2018, 738, 362.

[35]

Yan JH, Li MJ, Li KL, Qiu JW, Guo YJ. Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys. J. Mater. Eng. Perform., 2020, 29(4): 2125.

[36]

Ding PP, Mao AQ, Zhang X, Jin X, Wang B, Liu M, Gu XL. Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method. J. Alloys Compd., 2017, 721, 609.

[37]

Yang CC, Chau JLH, Weng CJ, Chen CS, Chou YH. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater. Chem. Phys., 2017, 202, 151.

[38]

Yao YG, Huang ZN, Xie PF, Lacey SD, Jacob RJ, Xie H, Chen FJ, Nie AM, Pu TC, Rehwoldt M, Yu DW, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu LB. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359(6383): 1489.

[39]

B. Niu, F. Zhang, H. Ping, N. Li, J.Y. Zhou, L.W. Lei, J.J. Xie, J.Y. Zhang, W.M. Wang, and Z.Y. Fu, Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys, Sci. Rep., 7(2017), No. 1, art. No. 3421.

[40]

Zhang AJ, Han JS, Meng JH, Su B, Li PD. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett., 2016, 181, 82.

[41]

Chen WP, Fu ZQ, Fang SC, Xiao HQ, Zhu DZ. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Design, 2013, 51, 854.

[42]

Fang SC, Chen WP, Fu ZQ. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des., 2014, 54, 973.

[43]

Liu LH, Yang C, Yao YG, Wang F, Zhang WW, Long Y, Li YY. Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process. Intermetallics, 2015, 66, 1.

[44]

Yang C, Zhu MD, Luo X, Liu LH, Zhang WW, Long Y, Xiao ZY, Fu ZQ, Zhang LC, Lavernia EJ. Influence of powder properties on densification mechanism during spark plasma sintering. Scripta Mater., 2017, 139, 96.

[45]

Li XX, Yang C, Chen T, Fu ZQ, Li YY, Ivasishin OM, Lavernia EJ. Determination of atomic diffusion coefficient via isochronal spark plasma sintering. Scripta Mater., 2018, 151, 47.

[46]

J. Xu, S.R. Wang, C.Y. Shang, S.F Huang, and Y. Wang, Microstructure and properties of CoCrFeNi(WC) high-entropy alloy coatings prepared using mechanical alloying and hot pressing sintering, Coatings, 9(2019), No. 1, art. No. 16.

[47]

Cheng H, Xie YC, Tang QH, Rao C, Dai PQ. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1360.

[48]

Ge WJ, Wu B, Wang SR, Xu S, Shang CY, Zhang ZT, Wang Y. Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Adv. Powder Technol., 2017, 28(10): 2556.

[49]

Xie YC, Cheng H, Tang QH, Chen W, Chen WK, Dai PQ. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics, 2018, 93, 228.

[50]

Jiang H, Zhang HZ, Huang TD, Lu YP, Wang TM, Li TJ. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mater. Des., 2016, 109, 539.

[51]

Liu WH, Lu ZP, He JY, Luan JH, Wang ZJ, Liu B, Liu Y, Chen MW, Liu CT. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater., 2016, 116, 332.

[52]

Jiang L, Cao ZQ, Jie JC, Zhang JJ, Lu YP, Wang TM, Li TJ. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J. Alloys Compd., 2015, 649, 585.

[53]

Wu YD, Cai YH, Chen XH, Wang T, Si JJ, Wang L, Wang YD, Hui XD. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des., 2015, 83, 651.

[54]

Wang YP, Li DY, Parent L, Tian H. Improving the wear resistance of white cast iron using a new concept-high-entropy microstructure. Wear, 2011, 271(9–10): 1623.

[55]

Poulia A, Georgatis E, Lekatou A, Karantzalis AE. Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Met. Hard Mater., 2016, 57, 50.

[56]

Shang CY, Axinte E, Sun J, Li XT, Li P, Du JW, Qiao PC, Wang Y. CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des., 2017, 117, 193.

[57]

Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

[58]

Praveen S, Murty BS, Kottada RS. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng. A, 2012, 534, 83.

[59]

Fu ZQ, Chen WP, Fang SC, Zhang DY, Xiao HQ, Zhu DZ. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd., 2013, 553, 316.

[60]

Fu ZQ, Chen WP, Chen Z, Wen HM, Lavernia EJ. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng. A, 2014, 619, 137.

[61]

Veronesi P, Colombini E, Rosa R, Leonelli C, Garuti M. Microwave processing of high entropy alloys: A powder metallurgy approach. Chem. Eng. Process.: Process Intensif., 2017, 122, 397.

[62]

Rosa R, Veronesi P, Leonelli C. A review on combustion synthesis intensification by means of microwave energy. Chem. Eng. Process.: Process Intensif., 2013, 71, 2.

[63]

Veronesi P, Leonelli C, Poli G, Casagrande A. Enhanced reactive NiAl coatings by microwave-assisted SHS. Compel, 2008, 27(2): 491.

[64]

Veronesi P, Rosa R, Colombini E, Leonelli C, Poli G, Casagrande A. Microwave assisted combustion synthesis of nonequilibrium intermetallic compounds. J. Microwave Power Electromagn. Energy, 2010, 44(1): 45.

[65]

Wang T, Kong J, Chao BX. Microstructure and mechanical properties of FeCoNiCuAl high-entropy alloy prepared by microwave-assisted combustion synthesis. Powder Metall. Technol., 2011, 29(6): 435

[66]

Veronesi P, Colombini E, Rosa R, Leonelli C, Rosi F. Microwave assisted synthesis of Si-modified Mn25Fex Ni25Cu(50−x) high entropy alloys. Mater. Lett., 2016, 162, 277.

[67]

Veronesi P, Rosa R, Colombini E, Leonelli C. Microwave-assisted preparation of high entropy alloys. Technologies, 2015, 3(4): 182.

[68]

C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H.B. Bei, M. Lang, R.C. Ewing, and W.L. Mao, High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 8(2017), art. No. 15634.

[69]

Ang ASM, Berndt CC, Sesso ML, Anupam A, Praveen S, Kottada RS, Murty BS. Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A, 2015, 46(2): 791.

[70]

Tian LH, Xiong W, Liu C, Lu S, Fu M. Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J. Mater. Eng. Perform., 2016, 25(12): 5513.

[71]

Tian LH, Fu M, Xiong W. Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials, 2018, 11(2): 320.

[72]

Ji W, Zhang JY, Wang WM, Wang H, Zhang F, Wang YC, Fu ZY. Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J. Eur. Ceram. Soc., 2015, 35(3): 879.

[73]

Raju GB, Mukhopadhyay A, Biswas K, Basu B. Densification and high-temperature mechanical properties of hot pressed TiB2-(0-10 wt.%) MoSi2 composites. Scripta Mater., 2009, 61(7): 674.

[74]

Wang WM, Fu ZY, Wang H, Yuan RZ. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J. Eur. Ceram. Soc., 2002, 22(7): 1045.

[75]

S.L. Zhang, Y.C. Sun, B.R. Ke, Y.L. Li, W. Ji, W.M. Wang, and Z.Y. Fu, Preparation and characterization of TiB2-(supranano-dual-phase) high-entropy alloy cermet by spark plasma sintering, Metals, 8(2018), No. 1, art. No. 58.

[76]

Li YL, Xu HY, Ke BR, Sun YC, Yang K, Ji W, Wang WM, Fu ZY. TEM characterization of a supra-nanodual-phase binder phase in spark plasma sintered TiB2-5wt%HEAs cermet. Ceram. Int., 2019, 45(7): 9401.

[77]

Fu ZZ, Koc R. Processing and characterization of TiB2-TiNiFeCrCoAl high-entropy alloy composite. J. Am. Ceram. Soc., 2017, 100(7): 2803.

[78]

Velo IL, Gotor FJ, Alcalá MD, Real C, Córdoba JM. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. J. Alloys Compd., 2018, 746, 1.

[79]

Lin CM, Tsai CW, Huang SM, Yang CC, Yeh JW. New TiC/Co1.5CrFeNi1.5Ti0.5 cermet with slow TiC coarsening during sintering. JOM, 2014, 66(10): 2050.

[80]

Guo YX, Shang XJ, Liu QB. Microstructure and properties of in-sttu TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings. Surf. Coat. Technol., 2018, 344, 353.

[81]

Guo YX, Liu QB, Shang XJ. In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding. Rare Met., 2020, 39(10): 1190.

[82]

Colombini E, Gualtieri ML, Rosa R, Tarterini F, Zadra M, Casagrande A, Veronesi P. SPS-assisted synthesis of SiCp reinforced high entropy alloys: Reactivity of SiC and effects of pre-mechanical alloying and post-annealing treatment. Powder Metall., 2018, 61(1): 64.

[83]

X.Y. Liu, L. Zhang, and Y. Xu, Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS, Appl. Phys. A, 123(2017), No. 9, art. No. 567.

[84]

Fan QC, Li BS, Zhang Y. The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites. Mater. Sci. Eng. A, 2014, 598, 244.

[85]

Wu WQ, Zhou R, Wei BQ, Ni S, Liu Y, Song M. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting. Mater. Charact., 2018, 144, 605.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/