Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge

Junjie Zhang , Xiaoyan Zhang , Bo Liu , Christian Ekberg , Shizhen Zhao , Shengen Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 563 -573.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 563 -573. DOI: 10.1007/s12613-020-2219-5
Article

Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge

Author information +
History +
PDF

Abstract

Municipal solid waste incineration products of bottom ash (BA), fly ash (FA), and pickling sludge (PS), causing severe environmental pollution, were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering. The effect of the BA/FA mass ratio on the phase composition, pore morphology, pore size distribution, physical properties, and glass structure was investigated, with results showing that with the increase in the BA/FA ratio, the content of the glass phase, Si-O-Si, and Q3Si units decrease gradually. The glass transmission temperature of the mixture was also reduced. When combined, the glass viscosity decreases, causing bubble coalescence and uneven pore distribution. Glass ceramic foams with uniform spherical pores are fabricated. When the content of BA, FA, and PS are 35wt%, 45wt%, and 20wt%, respectively, contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3, porosity of 56.01%, and compressive strength exceeding 16.23 MPa. This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.

Keywords

glass ceramic foams / bottom ash / fly ash / picking sludge / pore structure / glass units

Cite this article

Download citation ▾
Junjie Zhang, Xiaoyan Zhang, Bo Liu, Christian Ekberg, Shizhen Zhao, Shengen Zhang. Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 563-573 DOI:10.1007/s12613-020-2219-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang H, Chen ZW, Ji R, Liu LL, Wang XD. Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic. Ceram. Int., 2018, 44(12): 13681.

[2]

Das S, Lee SH, Kumar P, Kim KH, Lee SS, Bhattacharya SS. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod., 2019, 228, 658.

[3]

Mugoni C, Montorsi M, Siligardi C, Andreola F, Lancellotti I, Bernardo E, Barbieri L. Design of glass foams with low environmental impact. Ceram. Int., 2015, 41(3): 3400.

[4]

Zhu MG, Ji R, Li ZM, Wang H, Liu LL, Zhang ZT. Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater., 2016, 112, 398.

[5]

Ji R, Zhang ZT, He Y, Liu LL, Wang XD. Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue. Constr. Build. Mater., 2015, 85, 119.

[6]

Bernardo E, Cedro R, Florean M, Hreglich S. Reutilization and stabilization of wastes by the production of glass foams. Ceram. Int., 2007, 33(6): 963.

[7]

Souza MT, Maia BGO, Teixeira LB, de Oliveira KG, Teixeira AHB, Novaes de Oliveira AP. Glass foams produced from glass bottles and eggshell wastes. Process. Saf. Environ. Prot., 2017, 111, 60.

[8]

Sharifikolouei E, Baino F, Galletti C, Fino D, Ferraris M. Adsorption of Pb and Cd in rice husk and their immobilization in porous glass-ceramic structures. Int. J. Appl. Ceram. Technol., 2020, 17(1): 105.

[9]

Xi CP, Zheng F, Xu JH, Yang WG, Peng YQ, Li Y, Li P, Zhen Q, Bashir S, Liu JL. Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials. Constr. Build. Mater., 2018, 190, 896.

[10]

Liu TY, Lin CW, Liu JL, Han L, Gui H, Li C, Zhou X, Tang H, Yang QF, Lu AX. Phase evolution, pore morphology and microstructure of glass ceramic foams derived from tailings wastes. Ceram. Int., 2018, 44(12): 14393.

[11]

Baino F, Ferraris M. Production and characterization of ceramic foams derived from vitrified bottom ashes. Mater. Lett., 2019, 236, 281.

[12]

Stabile P, Bello M, Petrelli M, Paris E, Carroll MR. Vitrification treatment of municipal solid waste bottom ash. Waste Manage., 2019, 95, 250.

[13]

Vaitkus A, Gražulytė J, Šernas O, Vorobjovas V, Kleizienė R. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers. Constr. Build. Mater., 2019, 212, 456.

[14]

Flesoura G, Garcia-Banos B, Catala-Civera JM, Vleugels J, Pontikes Y. In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash. Ceram. Int., 2019, 45(15): 18751.

[15]

Xing YW, Guo FY, Xu MD, Gui XH, Li HS, Li GS, Xia YC, Han HS. Separation of unburned carbon from coal fly ash: A review. Powder Technol., 2019, 353, 372.

[16]

Yang J, Zhang SG, Pan DA, Liu B, Wu CL, Volinsky AA. Treatment method of hazardous pickling sludge by reusing as glass-ceramics nucleation agent. Rare Met., 2016, 35(3): 269.

[17]

Cilla MS, de Mello Innocentini MD, Morelli MR, Colombo P. Geopolymer foams obtained by the saponification/peroxide/gelcasting combined route using different soap foam precursors. J. Am. Ceram. Soc., 2017, 100(8): 3440.

[18]

Zhang XY, Li N, Lan T, Lu YJ, Gan K, Wu JM, Huo WL, Xu J, Yang JL. In-situ reaction synthesis of porous Si2N2O-Si3N4 multiphase ceramics with low dielectric constant via silica poly-hollow microspheres. Ceram. Int., 2017, 43(5): 4235.

[19]

Liu TY, Zhang JS, Wu JQ, Liu JL, Li C, Ning TX, Luo ZW, Zhou X, Yang QF, Lu AX. The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength. J. Clean. Prod., 2019, 223, 790.

[20]

Zaid MHM, Matori KA, Quah HJ, Lim WF, Sidek HAA, Halimah MK, Yunus WMM, Wahab ZA. Investigation on structural and optical properties of SLS-ZnO glasses prepared using a conventional melt quenching technique. J. Mater. Sci. Mater. Electron., 2015, 26(6): 3722.

[21]

Jia RD, Deng LB, Yun F, Li H, Zhang XF, Jia XL. Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics. Mater. Chem. Phys., 2019, 233, 155.

[22]

H. Elsayed, A.R. Romero, M. Picicco, J. Kraxner, D. Galusek, P. Colombo, and E. Bernardo, Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass, J. Non Cryst. Solids, 528(2020), art. No. 119744.

[23]

Zhang SF, Zhang X, Liu W, Lv X, Bai CG, Wang L. Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag. J. Non Cryst. Solids, 2014, 402, 214.

[24]

Han L, Song J, Lin CW, Liu JL, Liu TY, Zhang Q, Luo ZW, Lu AX. Crystallization, structure and properties of MgO-Al2O3-SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents. J. Eur. Ceram. Soc., 2018, 38(13): 4533.

[25]

Khalil EMA, ElBatal FH, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM. Infrared absorption spectra of transition metals-doped soda lime silica glasses. Physica B, 2010, 405(5): 1294.

[26]

Lai YM, Zeng YM, Tang XL, Zhang HW, Han J, Su H. Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy. RSC Adv., 2016, 6(96): 93722.

[27]

Gui H, Li C, Lin CW, Zhang Q, Luo ZW, Han L, Liu JL, Liu TY, Lu AX. Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO. J. Eur. Ceram. Soc., 2019, 39(4): 1397.

[28]

Han L, Song J, Zhang Q, Luo ZW, Lu AX. Crystallization, structure and characterization of MgO-Al2O3-SiO2-P2O5 transparent glass-ceramics with high crystallinity. J. Non Cryst. Solids, 2018, 481, 123.

[29]

Yamada H, Sukenaga S, Ohara K, Anand C, Ando M, Shibata H, Okubo T, Wakihara T. Comparative study of aluminosilicate glass and zeolite precursors in terms of Na environment and network structure. Microporous Mesoporous Mater., 2018, 271, 33.

[30]

Manara D, Grandjean A, Neuville DR. Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study. Am. Mineral., 2009, 94(5–6): 777.

[31]

Zhang S, Zhang YL, Gao JT, Qu ZM, Zhang Z. Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics. J. Eur. Ceram. Soc., 2019, 39(14): 4283.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/