Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models

Guo-zheng Kang , Hang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 567 -589.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 567 -589. DOI: 10.1007/s12613-020-2216-8
Invited Review

Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models

Author information +
History +
PDF

Abstract

Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading, and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure. Thus, this work reviews the progress in the cyclic plasticity of Mg alloys. First, the existing macroscopic and microscopic experimental results of Mg alloys are summarized. Then, corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed. Finally, some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.

Keywords

magnesium alloy / cyclic plasticity / macroscopic experiments / microscopic observations / constitutive model

Cite this article

Download citation ▾
Guo-zheng Kang, Hang Li. Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(4): 567-589 DOI:10.1007/s12613-020-2216-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment. J. Mater. Process. Technol., 2001, 117(3): 381.

[2]

Eliezer D, Aghion E, Sam Froes FH. Magnesium science, technology and applications. Adv. Perform. Mater., 1998, 5(3): 201.

[3]

Mordike BL, Ebert T. Magnesium: Properties—applications—potential. Mater. Sci. Eng. A, 2001, 302(1): 37.

[4]

Pollock TM. Weight loss with magnesium alloys. Science, 2010, 328(5981): 986.

[5]

Ball EA, Prangnell PB. Tensile-compressive yield assymetries in high strength wrought magnesium alloys. Scr. Metall. Mater., 1994, 31(2): 111.

[6]

Barnett MR, Keshavarz Z, Beer AG, Atwell D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater., 2004, 52(17): 5093.

[7]

Lou XY, Li M, Boger RK, Agnew SR, Wagoner RH. Hardening evolution of AZ31B Mg sheet. Int. J. Plast., 2007, 23(1): 44.

[8]

Nobre JP, Noster U, Kornmeier M, Dias AM, Scholtes B. Deformation asymmetry of AZ31 wrought magnesium alloy. Key Eng. Mater., 2002, 230–232, 267.

[9]

Xiong Y, Yu Q, Jiang YY. An experimental study of cyclic plastic deformation of extruded ZK60 magnesium alloy under uniaxial loading at room temperature. Int. J. Plast., 2014, 53, 107.

[10]

Li H, Kang GZ, Yu C, Liu YJ. Experimental investigation on temperature-dependent uniaxial ratchetting of AZ31B magnesium alloy. Int. J. Fatigue, 2019, 120, 33.

[11]

Gryguc A, Shaha SK, Behravesh SB, Jahed H, Wells M, Williams B, Su X. Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg. Int. J. Fatigue, 2017, 104, 136.

[12]

Albinmousa J, Jahed H, Lambert S. Cyclic behaviour of wrought magnesium alloy under multiaxial load. Int. J. Fatigue, 2011, 33(8): 1127.

[13]

Albinmousa J, Jahed H, Lambert S. Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy. Int. J. Fatigue, 2011, 33(11): 1403.

[14]

Begum S, Chen DL, Xu S, Luo AA. Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy. Metall. Mater. Trans. A, 2008, 39(12): 3014.

[15]

Chen C, Liu TM, Lv CL, Lu LW, Luo DZ. Study on cyclic deformation behavior of extruded Mg-3Al-1Zn alloy. Mater. Sci. Eng. A, 2012, 539, 223.

[16]

Chen LJ, Wang CY, Wu W, Liu Z, Stoica GM, Wu L, Liaw PK. Low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy. Metall. Mater. Trans. A, 2007, 38(13): 2235.

[17]

Hama T, Kariyazaki Y, Hosokawa N, Fujimoto H, Takuda H. Work-hardening behaviors of magnesium alloy sheet during in-plane cyclic loading. Mater. Sci. Eng. A, 2012, 551, 209.

[18]

Dong S, Yu Q, Jiang YY, Dong J, Wang FH, Jin L, Ding WJ. Characteristic cyclic plastic deformation in ZK60 magnesium alloy. Int. J. Plast., 2017, 91, 25.

[19]

Xiong Y, Yu Q, Jiang YY. Cyclic deformation and fatigue of extruded AZ31B magnesium alloy under different strain ratios. Mater. Sci. Eng. A, 2016, 649, 93.

[20]

Pahlevanpour AH, Karparvarfard SMH, Shaha SK, Behravesh SB, Adibnazari S, Jahed H. Anisotropy in the quasi-static and cyclic behavior of ZK60 extrusion: Characterization and fatigue modeling. Mater. Des., 2018, 160, 936.

[21]

Wang C, Luo TJ, Zhou JX, Yang YS. Anisotropic cyclic deformation behavior of extruded ZA81M magnesium alloy. Int. J. Fatigue, 2017, 96, 178.

[22]

Karparvarfard SMH, Shaha SK, Behravesh SB, Jahed H, Williams BW. Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy. Int. J. Fatigue, 2019, 118, 282.

[23]

Mohammed SMAK, Li DJ, Zeng XQ, Chen DL. Cyclic deformation behavior of a high zinc-containing cast magnesium alloy. Int. J. Fatigue, 2019, 125, 1.

[24]

K. Máthis, P. Beran, J. Čapek, and P. Lukáš, In-situ neutron diffraction and acoustic emission investigation of twinning activity in magnesium, J. Phys. Conf. Ser., 340(2012), art. No. 12096.

[25]

Park SH, Lee JH, Moon BG, You BS. Tension-compression yield asymmetry in as-cast magnesium alloy. J. Alloys Compd., 2014, 617, 277.

[26]

Begum S, Chen DL, Xu S, Luo AA. Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy. Mater. Sci. Eng. A, 2009, 517(1–2): 334.

[27]

Wang C, Luo TJ, Yang YS. Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates. J. Magnesium Alloys, 2016, 4(3): 181.

[28]

Chen G, Gao JW, Cui Y, Gao H, Guo X, Wu SZ. Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT. J. Alloys Compd., 2018, 735, 536.

[29]

Kim JH, Kim D, Lee YS, Lee MG, Chung K, Kim HY, Wagoner RH. A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets. Int. J. Plast., 2013, 50, 66.

[30]

Piao K, Lee JK, Kim JH, Kim HY, Chung K, Barlat F, Wagoner RH. A sheet tension/compression test for elevated temperature. Int. J. Plast., 2012, 38, 27.

[31]

Jiang L, Jonas JJ, Mishra RK, Luo AA, Sachdev AK, Godet S. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater., 2007, 55(11): 3899.

[32]

Wang FH, Feng ML, Jiang YY, Dong J, Zhang ZY. Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy. J. Mater. Sci. Technol., 2020, 39, 74.

[33]

Zhang JX, Yu Q, Jiang YY, Li QZ. An experimental study of cyclic deformation of extruded AZ61A magnesium alloy. Int. J. Plast., 2011, 27(5): 768.

[34]

Yu Q, Zhang JX, Jiang YY, Li QZ. Multiaxial fatigue of extruded AZ61A magnesium alloy. Int. J. Fatigue, 2011, 33(3): 437.

[35]

Li H, Kang GZ, Liu YJ, Jiang H. Non-proportionally multiaxial cyclic deformation of AZ31 magnesium alloy: Experimental observations. Mater. Sci. Eng. A, 2016, 671, 70.

[36]

Roostaei AA, Jahed H. Multiaxial cyclic behaviour and fatigue modelling of AM30 Mg alloy extrusion. Int. J. Fatigue, 2017, 97, 150.

[37]

Gryguć A, Behravesh SB, Shaha SK, Jahed H, Wells M, Williams B, Su X. Multiaxial cyclic behaviour of extruded and forged AZ80 Mg alloy. Int. J. Fatigue, 2019, 127, 324.

[38]

Chaboche JL. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast., 2008, 24(10): 1642.

[39]

Kang GZ. Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application. Int. J. Fatigue, 2008, 30(8): 1448.

[40]

Nobutada O. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev., 1990, 43(11): 283.

[41]

Kang GZ, Chao Y, Liu YJ, Quan GF. Uniaxial ratchetting of extruded AZ31 magnesium alloy: Effect of mean stress. Mater. Sci. Eng. A, 2014, 607, 318.

[42]

Yan ZF, Wang DH, He XL, Wang WX, Zhang HX, Dong P, Li CH, Li YL, Zhou J, Liu Z, Sun LY. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect. Mater. Sci. Eng. A, 2018, 723, 212.

[43]

Lin YC, Liu ZH, Chen XM, Chen J. Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings. Mater. Sci. Eng. A, 2013, 573, 234.

[44]

Lin YC, Chen XM, Chen G. Uniaxial ratcheting and low-cycle fatigue failure behaviors of AZ91D magnesium alloy under cyclic tension deformation. J. Alloys Compd., 2011, 509(24): 6838.

[45]

L. Meng, S. Hallais, A. Tanguy, W.F. Chen, and M.L. Feng, The effect of stress rate on ratchetting behavior of rolled AZ31B magnesium alloy at 393 K and room temperature, Mater. Res. Express, 6(2019), No. 8, art. No. 086510.

[46]

Noster U, Scholtes B. Cyclic deformation behavior of magnesium alloys AZ31 and AZ91 in the temperature range 20–300°C. Mater. Sci. Forum., 2003, 419–422, 103.

[47]

Castro F, Jiang YY. Fatigue of extruded AZ31B magnesium alloy under stress- and strain-controlled conditions including step loading. Mech. Mater., 2017, 108, 77.

[48]

Yoo MH. Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A, 1981, 12(3): 409.

[49]

Couret A, Caillard D. An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism. Acta Metall., 1985, 33(8): 1447.

[50]

Reed-Hill RE, Robertson WD. Deformation of magnesium single crystals by nonbasal slip. JOM, 1957, 9(4): 496.

[51]

Stohr PJF, Poirier JP. Etude en microscopie electronique du glissement pyramidal $\{11\bar{2}2\}\langle11\bar{2}3\rangle$ dans le magnesium. Philos. Mag., 1972, 25(6): 1313.

[52]

Obara T, Yoshinga H, Morozumi S. $\{11\bar{2}2\}\langle11\bar{2}3\rangle$ Slip system in magnesium. Acta Metall., 1973, 21(7): 845.

[53]

Ando S, Tanaka M, Tonda H. Pyramidal slip in magnesium alloy single crystals. Mater. Sci. Forum., 2003, 419–422, 87.

[54]

Lilleodden E. Microcompression study of Mg (0001) single crystal. Scripta Mater., 2010, 62(8): 532.

[55]

Byer CM, Li B, Cao BY, Ramesh KT. Microcompression of single-crystal magnesium. Scripta Mater., 2010, 62(8): 536.

[56]

Xie KY, Alam Z, Caffee A, Hemker KJ. Pyramidal I slip in c-axis compressed Mg single crystals. Scripta Mater., 2016, 112, 75.

[57]

Guillemer C, Clavel M, Cailletaud G. Cyclic behavior of extruded magnesium: Experimental, microstructural and numerical approach. Int. J. Plast., 2011, 27(12): 2068.

[58]

Wu W, Gao YF, Li N, Parish CM, Liu WJ, Liaw PK, An K. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys. Acta Mater., 2016, 121, 15.

[59]

Lu L, Bie BX, Li QH, Sun T, Fezzaa K, Gong XL, Luo SN. Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron x-ray imaging and diffraction. Acta Mater., 2017, 132, 389.

[60]

Lu L, Huang JW, Fan D, Bie BX, Sun T, Fezzaa K, Gong XL, Luo SN. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction. Acta Mater., 2016, 120, 86.

[61]

Dong S, Yu Q, Jiang YY, Dong J, Wang FH, Ding WJ. Electron backscatter diffraction observations of twinning-detwinning evolution in a magnesium alloy subjected to large strain amplitude cyclic loading. Mater. Des., 2015, 65, 762.

[62]

Yin SM, Yang F, Yang XM, Wu SD, Li SX, Li GY. The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Mater. Sci. Eng. A, 2008, 494(1–2): 397.

[63]

Yu Q, Wang J, Jiang YY, McCabe RJ, Li N, Tomé CN. Twin-twin interactions in magnesium. Acta Mater., 2014, 77, 28.

[64]

Sun Q, Xia T, Tan L, Tu J, Zhang M, Zhu MH, Zhang XY. Influence of $\{10\bar{1}2\}$ twin characteristics on detwinning in Mg-3Al-1Zn alloy. Mater. Sci. Eng. A, 2018, 735, 243.

[65]

Wu L, Agnew SR, Brown DW, Stoica GM, Clausen B, Jain A, Fielden DE, Liaw PK. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater., 2008, 56(14): 3699.

[66]

Sarker D, Friedman J, Chen DL. Influence of pre-strain on de-twinning activity in an extruded AM30 magnesium alloy. Mater. Sci. Eng. A, 2014, 605, 73.

[67]

Morrow BM, McCabe RJ, Cerreta EK, Tomé CN. In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall. Mater. Trans. A, 2013, 45(1): 36.

[68]

Lv LC, Xin YC, Yu HH, Hong R, Liu Q. The role of dislocations in strain hardening of an extension twinning predominant deformation. Mater. Sci. Eng. A, 2015, 636, 389.

[69]

Ma Q, El Kadiri H, Oppedal AL, Baird JC, Li B, Horstemeyer MF, Vogel SC. Twinning effects in a rod-textured AM30 Magnesium alloy. Int. J. Plast., 2012, 29, 60.

[70]

Dong S, Jiang YY, Dong J, Wang FH, Ding WJ. Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects. Mater. Sci. Eng. A, 2014, 615, 262.

[71]

Chen P, Li B, Culbertson D, Jiang YY. Negligible effect of twin-slip interaction on hardening in deformation of a Mg-3Al-1Zn alloy. Mater. Sci. Eng. A, 2018, 729, 285.

[72]

Yu HH, Xin YC, Cheng Y, Guan B, Wang MY, Liu Q. The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys. Mater. Sci. Eng. A, 2017, 700, 695.

[73]

Jeong J, Alfreider M, Konetschnik R, Kiener D, Oh SH. In-situ TEM observation of $\{10\bar{1}2\}$ twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency. Acta Mater., 2018, 158, 407.

[74]

Yoo MH. Interaction of slip dislocations with twins in hcp metals. Trans. Metall. Soc. AIME, 1969, 245, 2051.

[75]

Wang FL, Agnew SR. Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plast., 2016, 81, 63.

[76]

Wang FL, Barrett CD, McCabe RJ, El Kadiri H, Capolungo L, Agnew SR. Dislocation induced twin growth and formation of basal stacking faults in $\{10\bar{1}2\}$ twins in pure Mg. Acta Mater., 2019, 165, 471.

[77]

Wang F, Hazeli K, Molodov KD, Barrett CD, Al-Samman T, Molodov DA, Kontsos A, Ramesh KT, El Kadiri H, Agnew SR. Characteristic dislocation substructure in $\{10\bar{1}2\}$ twins in hexagonal metals. Scripta Mater., 2018, 143, 81.

[78]

Chino Y, Kimura K, Mabuchi M. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy. Mater. Sci. Eng. A, 2008, 486(1–2): 481.

[79]

Gu CF, Toth LS, Hoffman M. Twinning effects in a polycrystalline magnesium alloy under cyclic deformation. Acta Mater., 2014, 62, 212.

[80]

Kabirian F, Khan AS, Gnäupel-Herlod T. Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. Int. J. Plast., 2015, 68, 1.

[81]

Molodov KD, Al-Samman T, Molodov DA. Profuse slip transmission across twin boundaries in magnesium. Acta Mater., 2017, 124, 397.

[82]

Shi DF, Liu TM, Wang TY, Hou DW, Zhao SQ, Hussain S. $\{10\bar{1}2\}$ Twins across twin boundaries traced by in situ EBSD. J. Alloys Compd., 2017, 690, 699.

[83]

Zecevic M, Beyerlein IJ, Knezevic M. Activity of pyramidal I and II <c+a> slip in Mg alloys as revealed by texture development. J. Mech. Phys. Solids, 2018, 111, 290.

[84]

Nguyen NT, Lee MG, Kim JH, Kim HY. A practical constitutive model for AZ31B Mg alloy sheets with unusual stress-strain response. Finite. Elem. Anal. Des., 2013, 76, 39.

[85]

Lee CA, Lee MG, Seo OS, Nguyen NT, Kim JH, Kim HY. Cyclic behavior of AZ31B Mg: Experiments and non-isothermal forming simulations. Int. J. Plast., 2015, 75, 39.

[86]

Roostaei AA, Jahed H. A cyclic small-strain plasticity model for wrought Mg alloys under multiaxial loading: Numerical implementation and validation. Int. J. Mech. Sci., 2018, 145, 318.

[87]

Li M, Lou XY, Kim JH, Wagoner RH. An efficient constitutive model for room-temperature, low-rate plasticity of annealed Mg AZ31B sheet. Int. J. Plast., 2010, 26(6): 820.

[88]

Cazacu O, Barlat F. A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int. J. Plast., 2004, 20(11): 2027.

[89]

Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast., 2006, 22(7): 1171.

[90]

Plunkett B, Lebensohn RA, Cazacu O, Barlat F. Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater., 2006, 54(16): 4159.

[91]

Plunkett B, Cazacu O, Barlat F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int. J. Plast., 2008, 24(5): 847.

[92]

Yoon JW, Lou YS, Yoon J, Glazoff MV. Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int. J. Plast., 2014, 56, 184.

[93]

Tari DG, Worswick MJ, Ali U, Gharghouri MA. Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature. Int. J. Plast., 2014, 55, 247.

[94]

Muhammad W, Mohammadi M, Kang JD, Mishra RK, Inal K. An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths. Int. J. Plast., 2015, 70, 30.

[95]

Lee MG, Wagoner RH, Lee JK, Chung K, Kim HY. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets. Int. J. Plast., 2008, 24(4): 545.

[96]

Lee MG, Kim SJ, Wagoner RH, Chung K, Kim HY. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback. Int. J. Plast., 2009, 25(1): 70.

[97]

Barlat F, Gracio JJ, Lee MG, Rauch EF, Vincze G. An alternative to kinematic hardening in classical plasticity. Int. J. Plast., 2011, 27(9): 1309.

[98]

Lee J, Kim SJ, Lee YS, Lee JY, Kim D, Lee MG. Distortional hardening concept for modeling anisotropic/asymmetric plastic behavior of AZ31B magnesium alloy sheets. Int. J. Plast., 2017, 94, 74.

[99]

He WJ, Lin T, Liu Q. Experiments and constitutive modeling of deformation behavior of a magnesium sheet during two-step loading. Int. J. Solids Struct., 2018, 147, 52.

[100]

Taylor GI. Plastic Strain in Metals. J. Jpn. Inst. Met., 1938, 62, 307.

[101]

Kröner E. Zur plastischen verformung des vielkristalls. Acta Metall., 1961, 9(2): 155.

[102]

B. Budiansky and T.T. Wu, Theoretical prediction of plastic strains of polycrystals, [in] Proceedings of the 4th US National Congress of Applied Mechanics, California, 1962, p. 1175.

[103]

Van Houtte P. Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall., 1978, 26(4): 591.

[104]

Tomé CN, Lebensohn RA, Kocks UF. A model for texture development dominated by deformation twinning: Application to zirconium alloys. Acta Metall. Mater., 1991, 39(11): 2667.

[105]

Lebensohn RA, Tome CN. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater., 1993, 41(9): 2611.

[106]

Agnew SR, Yoo MH, Tomé CN. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater., 2001, 49(20): 4277.

[107]

Choi SH, Shin EJ, Seong BS. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater., 2007, 55(12): 4181.

[108]

Kalidindi SR. Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids, 1998, 46(2): 267.

[109]

Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Int. J. Plast., 2003, 19(10): 1843.

[110]

Abdolvand H, Daymond MR. Internal strain and texture development during twinning: Comparing neutron diffraction measurements with crystal plasticity finite-element approaches. Acta Mater., 2012, 60(5): 2240.

[111]

Abdolvand H, Daymond MR. Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach—Part I: Average behavior. J. Mech. Phys. Solids, 2013, 61(3): 783.

[112]

Abdolvand H, Daymond MR. Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: Local behavior. J. Mech. Phys. Solids, 2013, 61(3): 803.

[113]

Hama T, Suzuki T, Hatakeyama S, Fujimoto H, Takuda H. Role of twinning on the stress and strain behaviors during reverse loading in rolled magnesium alloy sheets. Mater. Sci. Eng. A, 2018, 725, 8.

[114]

Liu Q, Roy A, Silberschmidt VV. Temperature-dependent crystal-plasticity model for magnesium: A bottom-up approach. Mech. Mater., 2017, 113, 44.

[115]

Zhang HJ, Jérusalem A, Salvati E, Papadaki C, Fong KS, Song X, Korsunsky AM. Multi-scale mechanisms of twinning-detwinning in magnesium alloy AZ31B simulated by crystal plasticity modeling and validated via in situ synchrotron XRD and in situ SEM-EBSD. Int. J. Plast., 2019, 119, 43.

[116]

Zhang J, Joshi SP. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids, 2012, 60(5): 945.

[117]

Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 1957, 241(1226): 376.

[118]

Hill R. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids, 1965, 13(2): 89.

[119]

Hutchinson JW. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A, 1976, 348(1652): 101.

[120]

Wang H, Wu PD, Wang J, Tomé CN. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast., 2013, 49, 36.

[121]

Wang H, Wu PD, Wang J. Modeling inelastic behavior of magnesium alloys during cyclic loading-unloading. Int. J. Plast., 2013, 47, 49.

[122]

Qiao H, Agnew SR, Wu PD. Modeling twinning and detwinning behavior of Mg alloy ZK60A during monotonic and cyclic loading. Int. J. Plast., 2015, 65, 61.

[123]

Qiao H, Guo XQ, Oppedal AL, El Kadiri H, Wu PD, Agnew SR. Twin-induced hardening in extruded Mg alloy AM30. Mater. Sci. Eng. A, 2017, 687, 17.

[124]

Cailletaud G, Pilvin P. Utilisation de modèles polycristallins pour le calcul par éléments finis. Rev. Européenne des Éléments Finis, 1994, 3(4): 515.

[125]

Yu C, Kang GZ, Kan QH. Crystal plasticity based constitutive model for uniaxial ratchetting of polycrystalline magnesium alloy. Comput. Mater. Sci., 2014, 84, 63.

[126]

Frederick CO, Armstrong PJ. A mathematical representation of the multiaxial Bauschinger effect. Mater. High Temp., 2007, 24(1): 1.

[127]

H. Li, G.Z. Kang, and C. Yu, Modeling uniaxial ratchetting of magnesium alloys by a new crystal plasticity considering dislocation slipping, twinning and detwinning mechanisms, Int. J. Mech. Sci., 179(2020), art. No. 105660.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/