Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding
Hossein Hosseini-Tayeb , Seyed Mahdi Rafiaei
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 327 -334.
Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding
Stellite-21/WC nanopowders were deposited on Inconel through vibration-assisted laser cladding with different laser parameters. Optical and scanning electron microscopy, hardness measurements, and wear characterizations were employed to understand the microstructural and mechanical behaviors of the nanocomposites. Results showed that varying the cooling rate exerted remarkable effects on the microstructure of the as-cladded composites. Moreover, increasing the laser power from 150 W to 250 W increased the heat input and the dilutions. Dilution was affected by the scanning rate and powder feeding rate at a high laser power of 250 W. When WC nanoparticles were added as reinforcement, the dilution magnitude intensified while the hardness value increased from HV 350 to HV 700. The wear characterizations indicated that the composites containing 3wt% WC nanoparticles possessed the highest wear resistance.
Stellite / WC nanoparticles / mechanical properties / laser cladding
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
H. Hosseini-Tayeb and S.M. Rafiaei, Effects of lateral and vertical ultrasonic vibrations on the microstructure and microhardness of Stellite-6 coating deposited on Inconel 718 superalloy through laser metal deposition, Mater. Res. Express, 7(2020), No. 1, art. No. 016531. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
L. Santo, Laser cladding of metals: A review, Int. J. Surf. Sci. Eng., 2(2008), No. 5, art. No. 327. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
M. Hajizamani, M. Alizadeh, A. Alizadeh, and S.A. Jenabali-Jahromi, Role of melt percentage on characteristics of Al-Zn-Mg/3 wt.% Al2O3 nanostructured composite modified through semi-solid thermomechanical processing, Mater. Res. Express, 5(2018), No. 2, art. No. 026520. |
| [29] |
M. Hajizamani, M. Alizadeh, A. Alizadeh, and M. Karamouz, A comparative study on characteristics of nanostructured Al-Zn-Mg/3 wt% Al2O3 composites synthesized through solidstate sintering and semi-solid thermomechanical processing, Mater. Res. Express, 6(2019), No. 6, art. No. 066520. |
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |