Activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K

Guoxing Ren , Songwen Xiao , Caibin Liao , Zhihong Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 248 -255.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 248 -255. DOI: 10.1007/s12613-020-2205-y
Article

Activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K

Author information +
History +
PDF

Abstract

As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO-SiO2 slags, this work investigated the activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K with controlled oxygen partial pressure levels of 10−7, 10−6, and 10−5 Pa. Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure. The nickel in the MnO-SiO2 slag and MnO-SiO2-Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO-SiO2 slag decreased the dissolution of nickel in the slag and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO (γ NiO), which is solid NiO, in the SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623 K can be respectively calculated as γ NiO = 8.58w(NiO) + 3.18 and γ NiO = 11.06w(NiO) + 4.07, respectively, where w(NiO) is the NiO mass fraction in the slag.

Keywords

nickel / equilibrium / MnO-SiO2 slag / MnO-SiO2-Al2O3 slag / activity coefficient / spent lithium-ion batteries recovery / polymetallic nodules

Cite this article

Download citation ▾
Guoxing Ren, Songwen Xiao, Caibin Liao, Zhihong Liu. Activity coefficient of NiO in SiO2-saturated MnO-SiO2 slag and Al2O3-saturated MnO-SiO2-Al2O3 slag at 1623 K. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(2): 248-255 DOI:10.1007/s12613-020-2205-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanisch C, Diekmann J, Stieger A, Haselrieder W, Kwade A. Recycling of lithium-ion batteries. Handbook of Clean Energy Systems, 2015, Chichester, John Wiley & Sons, Ltd., 1.

[2]

A. Home, LME Stock Surge Grounds High-Flying Nickel, But for How Long?, Jan Harve ed. Glacier Media Group, 2020 [2020-1-17]. https://www.mining.com/wm/lmo-stock-surge-grounds-high-flying-nickel-but-for-how-long/

[3]

NetworkNewsWire, Electric Vehicle Growth Creates East-Asian Battery Mineral Boom, NetworkNewsWire, New York, 2020 [2020-4-10]. https://www.prnewswire.com/news-releases/electric-vehicle-growth-creates-east-asian-battery-mineral-boom301014990.html

[4]

Chen MY, Ma XT, Chen B, Arsenault R, Karlson P, Simon N, Wang Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 2019, 3(11): 2622.

[5]

Ren GX, Xiao SW, Xie MQ, Pan B, Fan YQ, Wang FG, Xia X. Reddy RG, Chaubal P, Pistorius PC, Pal U. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, 2016, Cham, Springer, 211.

[6]

Sen PK. Metals and materials from deep sea nodules: An outlook for the future. Int. Mater. Rev., 2010, 55(6): 364.

[7]

Senanayake G. Acid leaching of metals from deep-sea manganese nodules — A critical review of fundamentals and applications. Miner. Eng., 2011, 24(13): 1379.

[8]

Randhawa NS, Hait J, Jana RK. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy, 2016, 165, 166.

[9]

Jeong EH, Nam CW, Park KH, Park JH. Sulfurization of Fe-Ni-Cu-Co alloy to matte phase by carbothermic reduction of calcium sulfate. Metall. Mater. Trans. B, 2016, 47(2): 1103.

[10]

S. Agarwal, K.K. Sahu, R.K. Jana, and S.P. Mehrotra, Recovery of Cu, Ni, Co and Mn from sea nodules by direct reduction smelting, [in] Proceedings of the Eighth (2009) ISOPE Ocean Mining Symposium, Chennai, 2009, p. 131.

[11]

Friedmann D, Pophanken AK, Friedrich B. Pyrometallurgical treatment of high manganese containing deep sea nodules. J. Sustainable Metall., 2017, 3(2): 219.

[12]

Mehta KD, Das C, Pandey BD. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy, 2010, 105(1–2): 89.

[13]

Barik R, Sanjay K, Mishra BK, Mohapatra M. Micellar mediated selective leaching of manganese nodule in high temperature sulfuric acid medium. Hydrometallurgy, 2016, 165, 44.

[14]

S.C. Das, Extraction of metals from polymetallic ocean nodules, [in] Proceeding National Symposium on Chemical and Allied Materials from Ocean, Calcutta, 1989, p. 9.

[15]

Xiao SW, Ren GX, Xie MQ, Pan B, Fan YQ, Wang FG, Xia X. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system. J. Sustainable Metall., 2017, 3(4): 703.

[16]

Randhawa NS, Jana RK, Das NN. Silicomanganese production utilising low grade manganese nodules leaching residue. Miner. Process. Extr. Metall., 2013, 122(1): 6.

[17]

M. Sommerfeld, D. Friedmann, T. Kuhn, and B. Friedrich, “zero-waste”: A sustainable approach on pyrometallurgical processing of manganese nodule slags, Minerals, 8(2018), No. 12, art. No. 544.

[18]

Grimsey EJ. The effect of temperature on nickel solubility in silica saturated fayalite slags from 1523 to 1623 K. Metall. Trans. B, 1988, 19(2): 243.

[19]

Reddy RG, Acholonu CC. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags. Metall. Trans. B, 1984, 15(1): 33.

[20]

Henao HM, Hino M, Itagaki K. Phase equilibrium between Ni-S melt and FeOX-SiO2 or FeOX-CaO based slag under controlled partial pressures. Mater. Trans., 2002, 43(9): 2219.

[21]

Takeda Y, Ishiwata S, Yazawa A. Distribution equilibria of minor elements between liquid copper and calcium ferrite slag. Trans. Jpn. Inst. Met., 1983, 24(7): 518.

[22]

Pagador RU, Hino M, Itagaki K. Distribution of minor elements between MgO saturated FeOx-MgO-SiO2 or FeOx-CaO-MgO-SiO2 slag and nickel alloy. Mater. Trans., JIM, 1999, 40(3): 225.

[23]

Henao H, Hino M, Itagaki K. Distribution of Ni, Cr, Mn, Co and Cu between Fe-Ni alloy and FeOx-MgO-SiO2 base slags. Mater. Trans., 2001, 42(9): 1959.

[24]

Li GQ, Tsukihashi F. Distribution equilibria of Fe, Co and Ni between MgO-saturated FeOx-MgO-SiO2 slag and Ni alloy. ISIJ Int., 2001, 41(11): 1303.

[25]

Henao H, Hino M, Itagaki K. Phase equilibrium between Ni-S melt and CaO-Al2O3 based slag in CO-CO2-SO2 gas mixtures at 1773 K. Mater. Trans., 2002, 43(11): 2873.

[26]

Henao HM, Itagaki K. Phase equilibrium and distribution of minor elements between Ni-S melt and Al2O3-CaO-MgO slag at 1873 K. Metall. Mater. Trans. B, 2004, 35(6): 1041.

[27]

Lu X, Miki T, Nagasaka T. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting. Int. J. Miner. Metall. Mater., 2017, 24(1): 25.

[28]

Roghani G, Jak E, Hayes P. Phase equilibrium studies in the “MnO”-Al2O3-SiO2 system. Metall. Mater. Trans. B, 2002, 33(6): 827.

[29]

Lee SH, Moon SM, Min DJ, Park JH. Thermodynamic behavior of nickel in CaO-SiO2-FetO slag. Metall. Mater. Trans. B, 2002, 33(1): 55.

[30]

Park JG, Eom HS, Huh WW, Lee YS, Min DJ, Sohn I. A study in the thermodynamic behavior of nickel in the MgO-SiO2-FeO slag system. Steel Res. Int., 2011, 82(4): 415.

[31]

Grimsey EJ, Liu XL. The activity coefficient of cobalt oxide in silica-saturated iron silicate slags. Metall. Mater. Trans. B, 1995, 26(2): 229.

[32]

Derin B, Yücel O. The distribution of cobalt between CoCu alloys and Al2O3-FeO-Fe2O3-SiO2 slags. Scand. J. Metall., 2002, 31(1): 12.

[33]

Acholonu CC. Distribution of Copper, Cobalt, Nickel, Between Alloys and Silica-Unsaturated Iron Slags, 1983, Reno, University of Nevada, 9 [Dissertation]

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/