Review of the fatigue behavior of hard coating-ductile substrate systems

Yan-yun Bai , Jin Gao , Tao Guo , Ke-wei Gao , Alex A. Volinsky , Xiao-lu Pang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 46 -55.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 46 -55. DOI: 10.1007/s12613-020-2203-0
Invited Review

Review of the fatigue behavior of hard coating-ductile substrate systems

Author information +
History +
PDF

Abstract

With the wide application of coating materials in aerospace and other fields, their safety under fatigue conditions in service is important. However, research on the fatigue properties of ceramic hard coatings started late, and a unified standard is yet to be established to evaluate the fatigue life of hard coating-ductile substrate systems. Studies also present different opinions on whether coatings can improve or reduce the fatigue life of substrates. In this paper, the influence of the properties of ceramic coatings on fatigue performance is reviewed, and the effects of coating on the mechanism of fatigue crack initiation in substrates are discussed, aiming to help readers understand the fatigue behavior of hard coating-ductile substrate systems.

Keywords

fatigue / hard coating / residual stress / fracture toughness / film thickness

Cite this article

Download citation ▾
Yan-yun Bai, Jin Gao, Tao Guo, Ke-wei Gao, Alex A. Volinsky, Xiao-lu Pang. Review of the fatigue behavior of hard coating-ductile substrate systems. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(1): 46-55 DOI:10.1007/s12613-020-2203-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pawlak W, Kubiak KJ, Wendler BG, Mathia TG. Wear resistant multilayer nanocomposite WC1−x/C coating on Ti-6Al-4V titanium alloy. Tribol. Int, 2015, 82, 400.

[2]

Luo S, Zheng L, Luo H, Luo CS. A ceramic coating on carbon steel and its superhydrophobicity. Appl. Surf. Sci., 2019, 486, 371.

[3]

Baragetti S, Borzini E, Božic Arcieri EV. On the fatigue strength of uncoated and DLC coated 7075-T6 aluminum alloy. Eng. Fail. Anal., 2019, 102, 219.

[4]

Inspektor A, Salvador PA. Architecture of PVD coatings for metalcutting applications: A review. Surf. Coat. Technol., 2014, 257, 138.

[5]

Ewing JA, Humfrey JCW. The fracture of metals under repeated alternations of stress. Proc. Roy.. Soc. Lond., 1903, 71, 79.

[6]

Feng RY, Wang WX, Yan ZF, Wang DH, Wan SP, Shi N. Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect. Int. J. Miner. Metall. Mater., 2020, 27(9): 1301.

[7]

Albedah A, Bouiadjra BB, Mohammed SMAK, Benyahia F. Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys. Int. J. Miner. Metall. Mater., 2020, 27(1): 83.

[8]

Brame DR, Evans T. Deformation of thin films on solid substrates. Philos. Mag., 1958, 3(33): 971.

[9]

Hong YS, Lei ZQ, Sun CQ, Zhao AG. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. Int. J. Fatigue, 2014, 58, 144.

[10]

Phil. Trans. R. Soc. A, 2015, 373(2038)

[11]

Hotta S, Itou Y, Saruki K, Arai T. Fatigue strength at a number of cycles of thin hard coated steels with quench-hardened substrates. Surf. Coat. Technol., 1995, 73(1–2): 5.

[12]

Bouzakis KD, Vidakis N, Leyendecker T, Lemmer O, Fuss HG, Erkens G. Determination of the fatigue behaviour of thin hard coatings using the impact test and a FEM simulation. Surf. Coat. Technol., 1996, 86–87, 549.

[13]

Peraud S, Villechaise P, Mendez J. Effects of dynamically ion mixed thin coatings on fatigue damage processes in titanium alloys. Antimicrob. Agents Chemother., 2013, 21(6): 1081.

[14]

Nascimento MP, Souza RC, Pigatin WL, Voorwald HJC. Effects of surface treatments on the fatigue strength of AISI 4340 aeronautical steel. Int. J. Fatigue, 2001, 23(7): 607.

[15]

Voorwald HJC, Souza RC, Pigatin WL, Cioffi MOH. Evaluation of WC-17Co and WC-10Co-4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel. Surf. Coat. Techhol., 2005, 190(2–3): 155.

[16]

Baragetti S, Lavecchia GM, Terranova A. Variables affecting the fatigue resistance of PVD-coated components. Int. J. Fatigue, 2005, 27(10–12): 1541.

[17]

Kim KR, Suh CM, Murakami RI, Chung CW. Effect of intrinsic properties of ceramic coatings on fatigue behavior of Cr-Mo-V steels. Surf. Coat. Technol., 2003, 171(1–3): 15.

[18]

Ibrahim A, Berndt CC. Fatigue and deformation of HVOF sprayed WC-Co coatings and hard chrome plating. Mater. Sci. Eng. A, 2007, 456(1–2): 114.

[19]

Costa MYP, Venditti MLR, Voorwald HJC, Cioffi MOH, Cruz TG. Effect of WC-10%Co-4%Cr coating on the Ti-6Al-4V alloy fatigue strength. Mater. Sci. Eng. A, 2009, 507(1–2): 29.

[20]

Yıldız F, Yetim AF, Alsaran A, Çelik A, Kaymaz Efeoğlu Plain and fretting fatigue behavior of Ti6Al4V alloy coated with TiAlN thin film. Tribol. Int., 2013, 66, 307.

[21]

La Barbera-Sosa JG, Santana YY, Villalobos-Gutiérrez C, Chicot D, Lesage J, Decoopman X, Iost A, Staia MH, Puchi-Cacrera ES. Fatigue behavior of a structural steel coated with a WC-10Co-4Cr/Colmonoy 88 deposit by HVOF thermal spraying. Surf. Coat. Technol., 2013, 220, 248.

[22]

Lee CM, Chu JP, Chang WZ, Lee JW, Jang JSC, Liaw PK. Fatigue property improvements of Ti-6Al-4V by thin film coatings of metallic glass and TiN: A comparison study. Thin Solid Films, 2014, 561, 33.

[23]

Kovaci H, Yetim AF, Baran Çelik A. Fatigue crack growth behavior of DLC coated AISI 4140 steel under constant and variable amplitude loading conditions. Surf. Coat. Technol., 2016, 304, 316.

[24]

Uematsu Y, Kakiuchi T, Teratani T, Harada Y, Tokaji K. Improvement of corrosion fatigue strength of magnesium alloy by multilayer diamond-like carbon coatings. Surf. Coat. Technol., 2011, 205(8–9): 2778.

[25]

Engwall AM, Rao Z, Chason E. Origins of residual stress in thin films: Interaction between microstructure and growth kinetics. Mater. Des., 2016, 110, 616.

[26]

Arias DF, Gómez A, Souza RM, Vélez JM. Residual stress gradient of Cr and CrN thin films. Mater. Chem. Phys., 2018, 204, 269.

[27]

Zhao SS, Du H, Hua WG, Gong J, Li JB, Sun C. The depth distribution of residual stresses in (Ti, Al)N films: Measurement and analysis. J. Mater. Res., 2007, 22(10): 2659.

[28]

Rickerby DS, Bellamy BA, Jones AM. Internal stress and adherence of titanium nitride coatings. J. Vac. Sci. Technol. A, 1986, 4(6): 2809.

[29]

Suh CM, Hwang BW, Murakami RI. Behaviors of residual stress and high-temperature fatigue life in ceramic coatings produced by PVD. Mater. Sci. Eng. A, 2003, 343, 1.

[30]

Saini BS, Gupta VK. Effect of WC/C PVD coating on fatigue behaviour of case carburized SAE8620 steel. Surf. Coat. Technol., 2010, 205(2): 511.

[31]

Yonekura D, Tsukuda A, Murakami RI, Hanaguri K. Fatigue properties of nitride Cr-Mo steel with CrN thin film deposited by AIP method. Int. J. Mod. Phys. B, 2003, 17, 1554.

[32]

Bai YY, Xi YT, Gao KW, Yang HS, Pang XL, Volinsky AA. Residual stress control in CrAlN coatings deposited on Ti alloys. Cream. Int., 2018, 44(5): 4653.

[33]

Puchi-Cabrera ES, Matinez F, Herrera I, Berrios JA, Dixit S, Bhat D. On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit. Surf. Coat. Technol., 2004, 182(2–3): 276.

[34]

Oskouei RH, Ibrahim RN, Barati MR. An experimental study on the characteristics and delamination of TiN coatings deposited on Al 7075-T6 under fatigue cycling. Thin Solid Films, 2012, 526, 155.

[35]

Costa MYP, Venditti MLR, Cioffi MOH, Voorwald HJC, Guimarães VA, Ruas R. Fatigue behavior of PVD coated Ti-6Al-4V alloy. Int. J. Fatigue, 2011, 33(6): 759.

[36]

Nishida SI, Hattori N, Nakabaru Y, Tsuchiyama A. De Hosson JTM, Brebbia CA, Nishida SI. Fatigue strength improvement of Ti alloy with DLC coating. Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VIII, 2007, Southampton, Wit Press/Computational Mechanics Publications, 3.

[37]

Ferreira JAM, Costa JDM, Lapa V. Fatigue behaviour of 42Cr Mo4 steel with PVD coatings. Int. J. Fatigue, 1997, 19(4): 293.

[38]

Puchi-Cabrera ES, Staia MH, Ochoa-Pérez EA, Teer DG, Santana-Méndez YY, La Barbera-Sosa JG, Chicot D, Lesage J. Fatigue behavior of a 316L stainless steel coated with a DLC film deposited by PVD magnetron sputter ion plating. Mater. Sci. Eng. A, 2010, 527(3): 498.

[39]

Arslan E, Totik Y, Efeoglu I. Comparison of structure and tribological properties of MoS2-Ti films deposited by biased-dc and pulsed-dc. Prog. Org. Coat., 2012, 74(4): 772.

[40]

Dück A, Gamer N, Gesatzke W, Griepentrog M, OSterle W, Sahre M, Urban I. Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties. Surf. Coat. Technol., 2001, 142–144, 579.

[41]

Wieciński P, Smolik J, Garbacz H, Kurzydłwski KJ. Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings. Surf. Coat. Technol., 2014, 240, 23.

[42]

Yonekura D, Fujita J, Miki K. Fatigue and wear properties of Ti-6Al-4V alloy with Cr/CrN multilayer coating. Surf. Coat. Technol., 2015, 275, 232.

[43]

Puchicabrera ES, Staia MH, Lesage J, Gil L, Villalobos-Gutierrez C, La Barbera-Sosa J, Ochoa-Perez EA, Le Bourhis E. Fatigue behavior of AA7075-T6 aluminum alloy coated with ZrN by PVD. Int. J. Fatigue, 2008, 30(7): 1220.

[44]

Cassar G, Avelar-Batista Wilson JC, Banfield S, Housden J, Fenech M, Matthews A, Leyland A. Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti-6Al-4V alloy. Int. J. Fatigue, 2011, 33(9): 1313.

[45]

Costa MYP, Cioffi MOH, Venditti MLR, Voorwald HJC. Fatigue fracture behavior of Ti-6Al-4V PVD coated. Procedia Eng., 2010, 2(1): 1859.

[46]

Musil J, Kunc F, Zeman H, Poláková H. Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol., 2002, 154(2–3): 304.

[47]

Coatings, 2019, 9(10)

[48]

Pobedinskas P, Bolsée JC, Dexters W, Ruttens B, Mortet V, D’Haen J, Manca J V, Haenen K. Thickness dependent residual stress in sputtered AlN thin films. Thin Solid Films, 2012, 522, 180.

[49]

Akebono H, Komotori J, Suzuki H. The effect of coating thickness on fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy. Int. J. Mod. Phys. B, 2006, 20, 3599.

[50]

Guo T, Qiao LJ, Pang XL, Volinsky AA. Brittle film-induced cracking of ductile substrates. Acta Mater., 2015, 99, 273.

[51]

Guo T, Chen YM, Cao RH, Pang XL, He JY, Qiao LJ. Cleavage cracking of ductile-metal substrates induced by brittle coating fracture. Acta Mater., 2018, 152, 77.

[52]

Bai YY, Xi YT, Gao KW, Yang HS, Pang XL, Yang XS, Volinsky AA. Brittle coating effects on fatigue cracks behavior in Ti alloys. Int. J. Fatigue, 2019, 125, 432.

[53]

Heinz S, Eifler D. Crack initiation mechanisms of Ti6Al4V in the very high cycle fatigue regime. Int. J. Fatigue, 2016, 93, 301.

[54]

Huang N, Chen YR, Cai GJ, Liu CG, Wang ZG, Yiao G, Su HH, Liu XH, Zhen ZH. Research on the fatigue behavior of titanium based biomaterial coated with titanium nitride film by ion beam enhanced deposition. Surf. Coat. Technol., 1997, 88(1–3): 127.

[55]

Suh CM, Hwang BW, Kim KR. Effect of ceramic coating thickness on residual stress and fatigue characteristic of 1Cr-1Mo-0.25V steel. Int. J. Mod. Phys. B, 2020, 16(1&2): 181.

[56]

Li SX. Effects of inclusions on very high cycle fatigue properties of high strength steels. Int. Mater. Rev., 2012, 57(2): 92.

[57]

Chai G. The formation of subsurface non-defect fatigue crack origins. Int. J. Fatigue, 2006, 28(11): 1533.

[58]

Feng Y, Li WY, Guo CW, Gong MJ, Yang K. Mechanical property improvement induced by nanoscaled deformation twins in cold-sprayed Cu coatings. Mater. Sci. Eng. A, 2018, 727, 119.

[59]

S.H. Zhou, Z.G. Qiu, and D.C. Zeng, Deformation mechanisms and crack routes of CrAlN coatings, Mater. Charact., 167(2020), art. No. 110491.

[60]

Xi YT, Bai YY, Gao KW, Pang XL, Yang HS, Yan LC, Volinsky AA. In-situ stress gradient evolution and texture-dependent fracture of brittle ceramic thin films under external load. Cream. Int., 2018, 44(7): 8176.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/