Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion

Andries Mthisi , Nicholus Malatji , A. Patricia , I. Popoola , L. Rudolf Kanyane

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 119 -127.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 119 -127. DOI: 10.1007/s12613-020-2200-3
Article

Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion

Author information +
History +
PDF

Abstract

Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at different temperatures (800, 900, and 1000°C) and holding times (4, 8, and 12 min) to develop a high entropy alloy (HEA). The characteristics of spark plasma-synthesized (SPSed) alloys were experimentally explored through investigation of microstructures, microhardness, and corrosion using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS), Vickers microhardness tester, and potentiodynamic polarization, respectively. X-ray diffraction (XRD) characterization was employed to identify the phases formed on the developed alloys. The EDS results revealed that the alloys consisted of elements selected in this work irrespective of varying sintering parameters. The XRD, EDS, and scanning electron microscopy collectively provided evidence that the fabricated alloys were characterized by globular microstructures exhibiting face-centered cubic phase, which was formed on a basis of solid solution mechanism. This finding implies that the SPSed alloy showed the features of HEAs. The alloy produced at 1000°C and holding time of 12 min portrayed an optimal microhardness of HV 447.97, but the value decreased to HV 329.47 after heat treatment. The same alloy showed an outstanding corrosion resistance performance. The increase in temperature resulted in an Al20Cr20Fe25Ni25Mn10 alloy with superior density, microhardness, and corrosion resistance over the other alloys developed at different parameters.

Keywords

high entropy alloy / spark plasma sintering / microhardness / corrosion

Cite this article

Download citation ▾
Andries Mthisi, Nicholus Malatji, A. Patricia, I. Popoola, L. Rudolf Kanyane. Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 119-127 DOI:10.1007/s12613-020-2200-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murty BS, Yeh JW, Ranganathan S. A brief history of alloys and the birth of high-entropy alloys. High Entropy Alloys, 2014, Amsterdam, Elsevier, 1.

[2]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[3]

Yeh JW. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat., 2006, 31(6): 633.

[4]

Rudolf Kanyane L, Patricia Popoola A, Malatji N. Development of spark plasma sintered TiAlSiMoW multicomponent alloy: Microstructural evolution, corrosion and oxidation resistance. Results Phys., 2019, 12, 1754.

[5]

Malatji N, Popoola API, Lengopeng T, Pityana S. Tri-bological and corrosion properties of laser additive manufactured AlCrFeNiCu high entropy alloy. Mater. Today: Proc., 2020, 28, 944.

[6]

Alaneme KK, Bodunrin MO, Oke SR. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: A review. J. Mater. Res. Technol., 2016, 5(4): 384.

[7]

Tsao LC, Chen CS, Chu CP. Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy. Mater. Des. (1980-2015), 2012, 36, 854.

[8]

S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505.

[9]

Fu ZQ, Chen WP, Wen HM, Chen Z, Lavernia EJ. Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd., 2015, 646, 175.

[10]

S.Y. Zhang, X.F. Zhang, Q.S. Lu, P. He, T.S. Lin, and H.Y. Geng, Investigation of melt-spinning speed on the property of Yb0.2Ba0.1Al0.1Ga0.1ln0.1La0.05Eu0.05Co3.75Fe0.25Sb12 skutterudites, Mater. Lett., 260(2020), art. No. 126960.

[11]

S.Y. Zhang, S.W. Xu, H. Gao, Q.S. Lu, T.S. Lin, P. He, and H.Y. Geng, Characterization of multiple-filled skutterudites with high thermoelectric performance, J. Alloys Compd., 814(2020), art. No. 152272.

[12]

G. Popescu, M.M. Adrian, I. Csaki, C.A. Popescu, D. Mitrică, S. Vasile, and I. Carcea, Mechanically alloyed high entropy composite, IOP Conf. Ser.: Mater. Sci. Eng., 145(2016), No. 7, art. No. 072007.

[13]

Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd., 2008, 460(1–2): 253.

[14]

Babu CS, Sivaprasad K, Muthupandi V, Szpunar JA. Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater. Sci., 2014, 5, 1020.

[15]

Riva S, Brown SGR, Lavery NP, Tudball A, Yusenko KV. Cavaliere P. Spark plasma sintering of high entropy alloys. Spark Plasma Sintering of Materials, 2019, Cham, Springer, 517.

[16]

Yadav S, Biswas K, Kumar A. Cavaliere P. Spark plasma sintering of high entropy alloys. Spark Plasma Sintering of Materials, 2019, Cham, Springer, 539.

[17]

Ye YF, Wang Q, Lu J, Liu CT, Yang Y. High-entropy alloy: Challenges and prospects. Mater. Today, 2016, 19(6): 349.

[18]

Zeng JF, Wu CJ, Peng HP, Liu Y, Wang JH, Su XP. Microstructure and microhardness of as-cast and 800 °C annealed AlxCr0.2Fe0.2Ni0.6−x and Al0.2Cr0.2FeyNi0.6−y alloys. Vacuum, 2018, 152, 214.

[19]

Munitz A, Meshi L, Kaufman MJ. Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al—Cr—Fe—Mn—Ni high entropy alloy. Mater. Sci. Eng. A, 2017, 689, 384.

[20]

Choudhuri D, Gwalani B, Gorsse S, Mikler CV, Ramanujan RV, Gibson MA, Banerjee R. Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys. Scr. Mater., 2017, 127, 186.

[21]

Zhang AJ, Han JS, Meng JH, Su B, Pen DL. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett., 2016, 181, 82.

[22]

Eißmann N, Klöden B, Weißgärber T, Kieback B. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall., 2017, 60(3): 184.

[23]

German RM. Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solidpore systems. Crit. Rev. Solid State Mater. Sci., 2010, 35(4): 263.

[24]

S. Wagner, D. Kahraman, H. Kungl, M.J. Hoffmann, C. Schuh, K. Lubitz, H. Murmann-Biesenecker, and J.A. Schmid, Effect of temperature on grain size, phase composition, and electrical properties in the relaxor-ferroelectric-system Pb(Ni1/3Nb2/3) O3-Pb(Zr, Ti)O3, J. Appl. Phys., 98(2005), No. 2, art. No. 024102.

[25]

Kennedy S, Kumaran S, Srinivasa Rao T. Microstructure and mechanical properties of γ-TiAl consolidated by spark plasma sintering. Integr. Ferroelectr., 2017, 185(1): 11.

[26]

Adedayo AV. Development processes of globular microstructure. J. Miner. Mater. Charact. Eng., 2011, 10(7): 651.

[27]

Atkins AG. Deformation-mechanism maps (the plasticity and creep of metals and ceramics). J. Mech. Work. Technol., 1984, 9(2): 224.

[28]

Elkatatny S, Gepreel MAH, Hamada A, Nakamura K, Yamanaka K, Chiba A. Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12 Fe35Mn28Ni20 high-entropy alloy. Mater. Sci. Eng. A, 2019, 759, 380.

[29]

M.H. Xiao, J.W. Chen, J.J. Kang, K. Chen, D. Wu, and N. Gao, Effect of heat treatment process on mechanical properties and microstructure of FeAlCoCrNiTi0.5 alloy, AIP Adv., 8(2018), No. 9, art. No. 095322.

[30]

Ren B, Liu ZX, Li DM, Shi L, Cai B, Wang MX. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J. Alloys Compd., 2010, 493(1–2): 148.

[31]

Wang YP, Li BS, Fu HZ. Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater., 2009, 11(8): 641.

[32]

Li RB, Zhang WW, Zhang Y, Liaw PK. The effects of phase transformation on the microstructure and mechanical behavior of FeNiMnCr.75Alx high-entropy alloys. Mater. Sci. Eng. A, 2018, 725, 138.

[33]

Babalola BJ, Maledi N, Shongwe MB, Bodunrin MO, Obadele BA, Olubambi PA. Influence of nanocrystalline nickel powder on oxidation resistance of spark plasma sintered Ni-17Cr6.5Co1.2Mo6Al4W7.6Ta alloy. J. King Saud Univ. Eng. Sci., 2020, 32(3): 198.

[34]

Mthisi A, Popoola API. Influence of Al2O3 addition on the hardness and in vitro corrosion behavior of laser synthesized Ti-Al2O3 coatings on Ti-6Al-4V. Int. J. Adv. Manuf. Technol., 2019, 100(1–4): 917.

[35]

Lumley RN. Birbilis N, Hinton B. Fundamentals of aluminium metallurgy: production, processing, and applications. Corrosion and Corrosion Protection of Aluminium, 2011, Oxford, Woodhead Publishing, 574.

[36]

Butler TM, Weaver ML. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd., 2016, 674, 229.

[37]

Masemola K, Popoola P, Malatji N. The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic High entropy alloy. J. Mater. Res. Technol., 2020, 9(3): 5241.

[38]

Kanyane LR, Malatji N, Popoola API, Shongwe MB. Evolution of microstructure, mechanical properties, electrochemical behaviour and thermal stability of Ti025—Al0.2—Mo0.2—Si0.25W0.1 high entropy alloy fabricated by spark plasma sintering technique. Int. J. Adv. Manuf. Technol., 2019, 104(5–8): 3163.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/