Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation
Xiong-feng Zeng , Jian-sheng Wang , Ying-na Zhao , Wen-li Zhang , Meng-huan Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 503 -510.
Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation
We successfully constructed TiO2-pillared multilayer graphene nanocomposites (T-MLGs) via a facile method as follows: dodecanediamine pre-pillaring, ion exchange (Ti4+ pillaring), and interlayer in-situ formation of TiO2 by hydrothermal method. TiO2 nanoparticles were distributed uniformly on the graphene interlayer. The special structure combined the advantages of graphene and TiO2 nanoparticles. As a result, T-MLGs with 64.3wt% TiO2 showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin. The photo-degradation rate of T-MLGs with 64.3wt% TiO2 was 78% under light-emitting diode light irradiation for 150 min. Meanwhile, the pseudofirst-order rate constant of T-MLGs with 64.3wt% TiO2 was 3.89 times than that of pristine TiO2. The composites also exhibited high stability and reusability after five consecutive photocatalytic tests. This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO2 nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.
pillared structure / titanium dioxide-pillared multilayer graphene nanocomposites / photocatalysis / ciprofloxacin
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
X. Hu, X.J. Hu, Q.Q. Peng, L. Zhou, X.F. Tan, L.H. Jiang, C.F. Tang, H. Wang, S.H. Liu, Y.Q. Wang, and Z.Q. Ning, Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380(2020), art. No. 122366. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
J.J. Cai, H. Chen, S.L. Ding, and Q. Xie, Promoting photocarrier separation for photoelectrochemical water splitting in α-Fe2O3@C, J. Nanopart. Res., 21(2019), art. No. 153. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
J.Q. Yang, Y.B. Hu, C.G. Jin, L.J. Zhuge, and X.M. Wu, Preparation of TiO2/single layer graphene composite films via a novel interface-facilitated route, Appl. Surf. Sci., 503(2020), art. No. 144334. |
| [27] |
|
| [28] |
Y.L. Liu, H. Chen, C.J. Xu, Y.M. Sun, S. Li, M. Jiang, and G.W. Qin, Control of catalytic activity of nano — Au through tailoring the fermi level of support, Small, 15(2019), No. 34, art. No. 1901789. |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
A.K. Singh, V. Chaudhary, A.K. Singh, and S.R.P. Sinha, Effect of TiO2 nanoparticles on electrical properties of chemical vapor deposition grown single layer graphene, Synth. Met., 256(2019), art. No. 116155. |
| [37] |
A.K. Singh, V. Chaudhary, A.K. Singh, and S.R.P. Sinha, Tailoring of electrical properties of TiO2 decorated CVD grown single-layer graphene by HNO3 molecular doping, Synth. Met., 264(2020), art. No. 116389. |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, and U. Fatima, Synthesis of TiO2/graphene oxide nano-composites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin, Composites Part B, 175(2019), art. No. 107120. |
| [52] |
|
| [53] |
|
/
| 〈 |
|
〉 |