Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation

Xiong-feng Zeng , Jian-sheng Wang , Ying-na Zhao , Wen-li Zhang , Meng-huan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 503 -510.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 503 -510. DOI: 10.1007/s12613-020-2193-y
Article

Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation

Author information +
History +
PDF

Abstract

We successfully constructed TiO2-pillared multilayer graphene nanocomposites (T-MLGs) via a facile method as follows: dodecanediamine pre-pillaring, ion exchange (Ti4+ pillaring), and interlayer in-situ formation of TiO2 by hydrothermal method. TiO2 nanoparticles were distributed uniformly on the graphene interlayer. The special structure combined the advantages of graphene and TiO2 nanoparticles. As a result, T-MLGs with 64.3wt% TiO2 showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin. The photo-degradation rate of T-MLGs with 64.3wt% TiO2 was 78% under light-emitting diode light irradiation for 150 min. Meanwhile, the pseudofirst-order rate constant of T-MLGs with 64.3wt% TiO2 was 3.89 times than that of pristine TiO2. The composites also exhibited high stability and reusability after five consecutive photocatalytic tests. This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO2 nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.

Keywords

pillared structure / titanium dioxide-pillared multilayer graphene nanocomposites / photocatalysis / ciprofloxacin

Cite this article

Download citation ▾
Xiong-feng Zeng, Jian-sheng Wang, Ying-na Zhao, Wen-li Zhang, Meng-huan Wang. Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(3): 503-510 DOI:10.1007/s12613-020-2193-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dimitrakakis GK, Tylianakis E, Froudakis GE. Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett., 2008, 8(10): 3166.

[2]

Caracciolo AB, Grenni P, Rauseo J, Ademollo N, Cardoni M, Rolando L, Patrolecco L. Degradation of a fluoroquinolone antibiotic in an urbanized stretch of the River Tiber. Microchem. J., 2018, 136, 43.

[3]

Malakootian M, Nasiri A, Gharaghani MA. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem. Eng. Commun., 2020, 207(1): 56.

[4]

X. Hu, X.J. Hu, Q.Q. Peng, L. Zhou, X.F. Tan, L.H. Jiang, C.F. Tang, H. Wang, S.H. Liu, Y.Q. Wang, and Z.Q. Ning, Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2, Chem. Eng. J., 380(2020), art. No. 122366.

[5]

Imam SS, Adnan R, Kaus NHM. Photocatalytic degradation of ciprofloxacin in aqueous media: A short review. Toxicol. Environ. Chem., 2018, 100(5–7): 518.

[6]

Huo PW, Tang YF, Zhou MJ, Li JZ, Ye ZF, Ma CC, Yu LB, Yan YS. Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics. J. Ind. Eng. Chem., 2016, 37, 340.

[7]

Zheng X, Chen SY, Chen Z, Chen RY, Chen X. Preparation of carbon-coated TiO2-CeO2 fibers for the photocatalytic degradation of ciprofloxacin. Chin. J. Appl. Chem., 2013, 30(11): 1326.

[8]

El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin., 2010, 130(12): 2327.

[9]

Djellabi R, Ghorab MF, Cerrato G, Morandi S, Gatto S, Oldani V, Michele AD, Bianchi CL. Photoactive TiO2-montmorillonite composite for degradation of organic dyes in water. J. Photochem. Photobiol. A, 2014, 295, 57.

[10]

Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C, 2012, 13(3): 169.

[11]

Zhang YX, Zhou ZY, Chen T, Wang HT, Lu WJ. Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J. Environ. Sci., 2014, 26(10): 2114.

[12]

Cai JJ, Li S, Qin GW. Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Appl. Surf. Sci., 2019, 466, 92.

[13]

J.J. Cai, H. Chen, S.L. Ding, and Q. Xie, Promoting photocarrier separation for photoelectrochemical water splitting in α-Fe2O3@C, J. Nanopart. Res., 21(2019), art. No. 153.

[14]

Cai JJ, Ding SL, Chen G, Sun YL, Xie Q. In situ electrodeposition of mesoporous aligned α-Fe203 nanoflakes for highly sensitive nonenzymatic H2O2 sensor. Appl. Surf. Sci., 2018, 456, 302.

[15]

Cai JJ, Chen H, Liu CX, Yin SQ, Li HJ, Xu LC, Liu H, Xie Q. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation. Dalton Trans., 2020, 49(32): 11282.

[16]

Pian XT, Lin BZ, Chen YL, Kuang JD, Zhang KZ, Fu LM. Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity. J. Phys. Chem. C, 2011, 115(14): 6531.

[17]

Qiu BC, Xing MY, Zhang JL. Mesoporous TiO2 nano-crystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc., 2014, 136(16): 5852.

[18]

Posa VR, Annavaram V, Koduru JR, Bobbala P, Madhavi V, Somala AR. Preparation of graphene-TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J. Exp. Nanosci., 2016, 11(9): 722.

[19]

Kanan S, Moyet MA, Arthur RB, Patterson HH. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev. Sci. Eng., 2020, 62(1): 1.

[20]

Wang P, Wang J, Wang XF, Yu HG, Yu JG, Lei M, Wang YG. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl. Catal. B, 2013, 132–133, 452.

[21]

Hu GX, Tang B. Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation. Mater. Chem. Phys., 2013, 138(2–3): 608.

[22]

Low FW, Lai CW. Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renewable Sustainable Energy Rev., 2018, 82, 103.

[23]

Liang FX, Wang JZ, Wang Y, Lin Y, Liang L, Gao Y, Luo LB. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection. Appl. Surf. Sci., 2017, 426, 391.

[24]

Zhang DY, Ge CW, Wang JZ, Zhang TF, Wu YC, Liang FX. Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl. Surf. Sci., 2016, 387, 1162.

[25]

Chen J, Li C, Shi GQ. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett., 2013, 4(8): 1244.

[26]

J.Q. Yang, Y.B. Hu, C.G. Jin, L.J. Zhuge, and X.M. Wu, Preparation of TiO2/single layer graphene composite films via a novel interface-facilitated route, Appl. Surf. Sci., 503(2020), art. No. 144334.

[27]

Xu CJ, Wu YT, Li S, Zhou J, Chen J, Jiang M, Zhao HD, Qin GW. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation. J. Mater. Sci. Technol., 2020, 40, 39.

[28]

Y.L. Liu, H. Chen, C.J. Xu, Y.M. Sun, S. Li, M. Jiang, and G.W. Qin, Control of catalytic activity of nano — Au through tailoring the fermi level of support, Small, 15(2019), No. 34, art. No. 1901789.

[29]

Cao F, Yang X, Shen C, Li X, Wang JM, Qin GW, Li S, Pang XY, Li GQ. Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. J. Mater. Chem. A, 2020, 8(15): 7245.

[30]

Cao XQ, Zhou J, Wang HN, Li S, Wang W, Qin GW. Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity. J. Mater. Chem. A, 2019, 7(18): 10980.

[31]

Liu HH, Zhu DB, Shi H, Shao X. Fabrication of a contamination-free interface between graphene and TiO2 iingle crystals. ACS Omega, 2016, 1(2): 168.

[32]

Min YL, Zhang K, Zhao W, Zheng FC, Chen YC, Zhang YG. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J., 2012, 193–194, 203.

[33]

Zhang YH, Tang ZR, Fu XZ, Xu YJ. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials?. ACS Nano, 2010, 4(12): 7303.

[34]

Zhang ZY, Xiao F, Guo YL, Wang S, Liu YQ. One-pot self-sssembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces, 2013, 5(6): 2227.

[35]

Zhao FH, Dong BH, Gao RJ, Su G, Liu W, Shi L, Xia CH, Cao LX. A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation. Appl. Surf. Sci., 2015, 351, 303.

[36]

A.K. Singh, V. Chaudhary, A.K. Singh, and S.R.P. Sinha, Effect of TiO2 nanoparticles on electrical properties of chemical vapor deposition grown single layer graphene, Synth. Met., 256(2019), art. No. 116155.

[37]

A.K. Singh, V. Chaudhary, A.K. Singh, and S.R.P. Sinha, Tailoring of electrical properties of TiO2 decorated CVD grown single-layer graphene by HNO3 molecular doping, Synth. Met., 264(2020), art. No. 116389.

[38]

Júnior MAM, Morais A, Nogueira AF. Boosting the solar-light-driven methanol production through CO2 photoreduction by loading Cu2O on TiO2-pillared K2Ti4O9. Microporous Mesoporous Mater., 2016, 234, 1.

[39]

Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prud’homme RK. Intercalation and stitching of graphite oxide with diaminoalkanes. Langmui, 2007, 23(21): 10644.

[40]

Chen RY, Wang JW, Wang HN, Yao W, Zhong J. Photocatalytic degradation of methyl orange in aqueous solution over titania-pillared α-zirconium phosphate. Solid State Sci., 2011, 13(3): 630.

[41]

Guo FF, Xing W, Zhou J, Zhao LM, Zeng JB, Liu Z, Xue QZ, Yan ZF. Studies in the capacitance properties of diaminoalkane-intercalated graphene. Electrochim. Acta, 2014, 148, 220.

[42]

Zargari S, Rahimi R, Ghaffarinejad A, Morsali A. Enhanced visible light photocurrent response and photodegradation efficiency over TiO2-graphene nanocomposite pillared with tin porphyrin. J. Colloid Interface Sci., 2016, 466, 310.

[43]

Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46(14): 1994.

[44]

Zhang H, Lv XJ, Li YM, Wang Y, Li JH. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380.

[45]

Zhang WW, Guo HL, Sun HQ, Zeng RC. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection. Appl. Surf. Sci., 2016, 382, 128.

[46]

Min SX, Wang F, Lu GX. Graphene-induced spatial charge separation for selective water splitting over TiO2 photocatalyst. Catal. Commun., 2016, 80, 28.

[47]

Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS, Kim EJ, Hur SH. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J., 2011, 170(1): 226.

[48]

Fan XR, Lin BZ, Liu H, He LW, Chen YL, Gao BF. Remarkable promotion of photocatalytic hydrogen evolution from water on TiO2-pillared titanoniobate. Int. J. Hydrogen Energy, 2013, 38(2): 832.

[49]

Li N, Zhang J, Tian Y, Zhao JH, Zhang J, Zuo W. Precisely controlled fabrication of magnetic 3D γ-Fe203@ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight. Chem. Eng. J., 2017, 308, 377.

[50]

Salma A, Thoröe-Boveleth S, Schmidt TC, Tuerk J. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin. J. Hazard Mater., 2016, 313, 49.

[51]

S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, and U. Fatima, Synthesis of TiO2/graphene oxide nano-composites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin, Composites Part B, 175(2019), art. No. 107120.

[52]

Guo JJ, Zhu SM, Chen ZX, Li Y, Yu ZY, Liu QL, Li JB, Feng CL, Zhang D. Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Uttrason. Sonochem., 2011, 18(5): 1082.

[53]

Chen HW, Ku Y, Kuo YL. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis. Water Res., 2007, 41(10): 2069.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/