Editorial for special issue on nanostructured high-entropy materials

Yong Zhang , Rui-xuan Li

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1309 -1311.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1309 -1311. DOI: 10.1007/s12613-020-2189-7
Article

Editorial for special issue on nanostructured high-entropy materials

Author information +
History +
PDF

Cite this article

Download citation ▾
Yong Zhang, Rui-xuan Li. Editorial for special issue on nanostructured high-entropy materials. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1309-1311 DOI:10.1007/s12613-020-2189-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei CB, Du XH, Lu YP, Jiang H, Li TJ, Wang TM. Novel as-cast AlCrFe2Ni2Ti0.5 high entropy alloy with excellent mechanical properties. Int. J. Miner. Metall. Mater., 2020, 27(10): 1312.

[2]

Huang TD, Wu SY, Jiang H, Lu YP, Wang TM, Li TJ. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1318.

[3]

Ye XC, Wang T, Xu ZY, Liu C, Wu HH, Zhao GW, Fang D. Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1326.

[4]

Malatji N, Popoola API, Lengopeng T, Pityana S. Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. Int. J. Miner. Metall. Mater., 2020, 27(10): 1332.

[5]

Zhang M, Hou JX, Yang HJ, Tan YQ, Wang XJ, Shi XH, Guo RP, Qiao JW. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1341.

[6]

Zheng FK, Zhang GN, Chen XJ, Yang X, Yang ZC, Li Y, Li JT. A new method of preparing high-performance high-entropy alloys through high-gravity combustion synthesis. Int. J. Miner. Metall. Mater., 2020, 27(10): 1347.

[7]

Nair RB, Arora HS, Grewal HS. Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy. Int. J. Miner. Metall. Mater., 2020, 27(10): 1353.

[8]

Hou JX, Fan J, Yang HJ, Wang Z, Qiao JW. Deformation behavior and plastic instabilities of boronized Al0.25CoCr-FeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1363.

[9]

Song P, Wang C, Ren J, Sun Y, Zhang Y, Bousquet A, Sauvage T, Tomasella E. Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. Int. J. Miner. Metall. Mater., 2020, 27(10): 1371.

[10]

Xing QW, Ma J, Zhang Y. Phase thermal stability and mechanical properties analyses of (Cr,Fe,V)-(Ta,W) multiple-based elemental system using a compositional gradient film. Int. J. Miner. Metall. Mater., 2020, 27(10): 1379.

[11]

Dai CD, Fu Y, Guo JX, Du CW. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering. Int. J. Miner. Metall. Mater., 2020, 27(10): 1388.

[12]

Bhandari U, Zhang CY, Guo SM, Yang SZ. First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW. Int. J. Miner. Metall. Mater., 2020, 27(10): 1398.

[13]

Nong ZS, Wang HY, Zhu JC. First-principles calculations of structural, elastic and electronic properties of (TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure. Int. J. Miner. Metall. Mater., 2020, 27(10): 1405.

[14]

Zhang SL, Chen WY, Cui N, Wu QQ, Su YL. Giant magneto impedance effect of Co-rich amorphous fibers under magnetic interaction. Int. J. Miner. Metall. Mater., 2020, 27(10): 1415.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/