Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags

Chen-yang Xu , Cui Wang , Ren-ze Xu , Jian-liang Zhang , Ke-xin Jiao

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 797 -803.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (5) : 797 -803. DOI: 10.1007/s12613-020-2187-9
Article

Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags

Author information +
History +
PDF

Abstract

We investigated the effect of Al2O3 content on the viscosity of CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 (mass ratio of CaO/SiO2 is 1.0, and Al2O3 content is 17wt%–29wt%) slags. The results show that the viscosity of the slag increases gradually with increases in the Al2O3 content in the range of 17wt% to 29wt% due to the role of Al2O3 as a network former in the polymerization of the aluminosilicate structure of the slag. With increases in the Al2O3 content from 17wt% to 29wt%, the apparent activation energy of the slags also increases from 180.85 to 210.23 kJ/mol, which is consistent with the variation in the critical temperature. The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al2O3. The application of Iida’s model for predicting the slag viscosity in the presence of Cr2O3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al2O3 content are at relatively low levels, i.e., the temperature range of 1673 to 1803 K and the Al2O3 content range of 17wt%–29wt% in CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 slag.

Keywords

slag / viscosity / high aluminium oxide / apparent activation energy / structure / viscosity prediction

Cite this article

Download citation ▾
Chen-yang Xu, Cui Wang, Ren-ze Xu, Jian-liang Zhang, Ke-xin Jiao. Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(5): 797-803 DOI:10.1007/s12613-020-2187-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li JH, Li XH, Hu QY, Wang ZX, Zhou YY, Zheng JC, Liu WR, Li LJ. Effect of pre-roasting on leaching of laterite. Hydrometallurgy, 2009, 99(1–2): 84.

[2]

Norgate T, Jahanshahi S. Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner. Eng., 2011, 24(7): 698.

[3]

Zhang BS, Jiang KX, Wang HB, Feng YP. Progress of pyrometallurgical smelting technologies for laterite nickel ore in China. Nonferrous Met. Eng. Res., 2012, 33(5): 16.

[4]

Zhang YP. Technico-economical analysis of Ni-containing hot metal production with laterite in the blast furnace. Ferro-Alloys, 2013, 44(4): 10.

[5]

Xu RZ, Zhang JL, Fan XY, Zheng WW, Zhao YA. Effect of MnO on high-alumina slag viscosity and corrosion behavior of refractory in slags. ISIJ Int, 2017, 57(11): 1887.

[6]

Steel Res. Int., 2017, 88(4) art. No. 1600241

[7]

Steel Res. Int., 2018, 89(3) art. No. 1700353

[8]

Du CK, Yang J, Zhao XZ, Shi YJ, You JL, Gao XD. Viscosity and desulfurization behavior of blast furnace slag with high Al2O3 content. J. Iron Steel Res., 2013, 25(7): 19.

[9]

Ma J, Fu GQ, Li W, Zhu MY. Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag. Int. J. Miner. Metall. Mater., 2020, 27(3): 310.

[10]

Yan ZM, Lv XW, Liang D, Zhang J, Bai CG. Transition of blast furnace slag from silicates-based to aluminates-based: Viscosity. Metall. Mater. Trans. B, 2017, 48(2): 1092.

[11]

Zhang XF, Jiang T, Xue XX, Hu BS. Influence of MgO/Al2O3 ratio on viscosity of blast furnace slag with high Al2O3 content. Steel Res. Int., 2016, 87(1): 87.

[12]

Yao L, Ren S, Wang XQ, Liu QC, Dong LY, Yang JF, Liu JB. Effect of Al2O3, MgO and CaO/SiO2 on viscosity of high alumina blast furnace slag. Steel Res. Int., 2016, 87(2): 241.

[13]

Kim H, Matsuura H, Tsukihashi F, Wang WL, Min DJ, Sohn I. Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate-based slags containing 10 mass pct MgO. Metall. Mater. Trans. B, 2013, 44(1): 5.

[14]

Park JH, Min DJ, Song HS. Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags. Metall. Mater. Trans. B, 2004, 35(2): 269.

[15]

Urbain G. Viscosity estimation of slags. Steel Res. Int., 1987, 58(3): 111.

[16]

Riboud PV, Roux Y, Lucas LD, Gaye H. Improvement of continuous casting powders. Fachber. Hüttenprax. Metallweiterverarbei., 1981, 19(10): 859.

[17]

Iida T, Sakai H, Kita Y, Murakami K. Equation for estimating viscosities of industrial mold fluxes. High Temp. Mater. Processes, 2000, 19(3–4): 153.

[18]

Iida T, Sakai H, Kita Y, Shigeno K. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int., 2000, 40, S110.

[19]

Mills KC, Sridhar S. Viscosities of ironmaking and steel-making slags. Ironmaking Steelmaking, 1999, 26(4): 262.

[20]

Ray HS, Pal S. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmaking Steelmaking, 2004, 31(2): 125.

[21]

Shankar A, Görnerup M, Lahiri AK, Seetharaman S. Estimation of viscosity for blast furnace type slags. Ironmaking Steelmaking, 2007, 34(6): 477.

[22]

Nakamoto M, Lee J, Tanaka T. A model for estimation of viscosity of molten silicate slag. ISIJ Int., 2005, 45(5): 651.

[23]

Nakamoto M, Miyabayashi Y, Holappa L, Tanaka T. A model for estimating viscosities of aluminosilicate melts containing alkali oxides. ISIJ Int., 2007, 47(10): 1409.

[24]

Miyabayashi Y, Nakamoto M, Tanaka T, Yamamoto T. A model for estimating the viscosity of molten aluminosilicate containing calcium fluoride. ISIJ Int., 2009, 49(3): 343.

[25]

Zhang GH, Chou KC, Mills K. A structurally based viscosity model for oxide melts. Metall. Mater. Trans. B, 2014, 45(2): 698.

[26]

Qiu GB, Chen L, Zhu JY, Lv XW, Bai CG. Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag. ISIJ Int., 2015, 55(7): 1367.

[27]

Park JH, Min DJ, Song HS. The effect of CaF2 on the viscosities and structures of CaO-SiO2(-MgO)-CaF2 slggs. Metall. Mater. Trans. B, 2002, 33(5): 723.

[28]

Wang C, Zhang JL, Liu ZJ, Jiao KX, Wang GW, Yang JQ, Chou KC. Effect of chlorine on the viscosities and structures of CaO-SiO2-CaCl2 slags. Metall. Mater. Trans. B, 2017, 48(1): 328.

[29]

Ko KY, Park JH. Effect of CaF2 addition on the viscosity and structure of CaO-SiO2-MnO slags. ISIJ Int., 2013, 53(6): 958.

[30]

Park JH. Structure-property correlations of CaO-SiO2-MnO slag derived from Raman spectroscopy. ISIJ Int., 2012, 52(9): 1627.

[31]

Park JH, Min DJ, Song HS. Structural investigation of CaO-Al2O3 and CaO-Al2O3-CaF2 slags via fourier transform infrared spectra. ISIJ Int., 2002, 42(1): 38.

[32]

Kim WH, Sohn I, Min DJ. A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3-MgO-K2O quinary slag system. Steel Res. Int., 2010, 81(9): 735.

[33]

Machin JS, Yee TB, Hanna DL. Viscosity studies of system CaO-MgO-Al2O3-SiO2: III, 35, 45, and 50% SiO2. J. Am. Ceram. Soc., 1952, 35(12): 322.

[34]

Machin JS, Hanna DL. Viscosity studies of system CaO-MgO-Al2O3-SiO2: I, 40% SiO2. J. Am. Ceram. Soc., 1945, 28(11): 310.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/