Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review

Yu-ting Wu , Chong Li , Ye-fan Li , Jing Wu , Xing-chuan Xia , Yong-chang Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 553 -566.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 553 -566. DOI: 10.1007/s12613-020-2177-y
Invited Review

Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review

Author information +
History +
PDF

Abstract

Ni3Al-based alloys have drawn much attention as candidates for high-temperature structural materials due to their excellent comprehensive properties. The microstructure and corresponding mechanical properties of Ni3Al-based alloys are known to be susceptible to heat treatment. Thus, a significant step is to employ various heat treatments to derive the desirable mechanical properties of the alloys. This paper briefly summarizes the recent advances in the microstructure evolution that occurs during the heat treatment of Ni3Al-based alloys. Aside from γ′ phase and γ phase, the precipitations of β phase, α-Cr precipitates, and carbides are also found in Ni3Al-based alloys with the addition of various alloying elements. The evolution in morphology, size, and volume fraction of various types of secondary phases during heat treatment are reviewed, involving γ′ phase, β phase, α-Cr precipitate, and carbides. The kinetics of the growth of precipitates are also analyzed. Furthermore, the influences of heat treatment on the mechanical properties of Ni3Al-based alloys are discussed.

Keywords

intermetallics / heat treatment / microstructure / mechanical properties

Cite this article

Download citation ▾
Yu-ting Wu, Chong Li, Ye-fan Li, Jing Wu, Xing-chuan Xia, Yong-chang Liu. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(4): 553-566 DOI:10.1007/s12613-020-2177-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu CT, Stiegler JO. Ductile ordered intermetallic alloys. Science, 1984, 226(4675): 636.

[2]

Kozubski R. Long-range order kinetics in Ni3Al-based intermetallic compounds with L12-type superstructure. Prog. Mater. Sci., 1997, 41(1–2): 1.

[3]

Jozwik P, Polkowski W, Bojar Z. Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities. Materials, 2015, 8(5): 2537.

[4]

Wu YT, Liu YC, Li C, Xia XC, Huang Y, Li HJ, Wang HP. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression. J. Alloys Compd., 2017, 712, 687.

[5]

David SA, Deevi SC. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications. Sci. Technol. Weld. Joining, 2017, 22(8): 681.

[6]

Karin G, Luo HL, Feng D, Li CH. Ni3Al-based intermetallic alloys as a new type of high-temperature and wear-resistant materials. J. Iron Steel Res. Int., 2007, 14(5): 21.

[7]

Wu YT, Li C, Xia XC, Liang HY, Qi QQ, Liu YC. Precipitate coarsening and its effects on the hot deformation behavior of the recently-strengthened superalloys. J. Mater. Sci. Technol., 2021, 67, 95.

[8]

Sikka VK, Deevi SC, Viswanathan S, Swindeman RW, Santella ML. Advances in processing of Ni3Al-based irrter-metallics and applications. Intermetallics, 2000, 8(9–11): 1329.

[9]

Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics. Acta Mater., 2000, 48(1): 307.

[10]

Stoloff NS, Liu CT, Deevi SC. Emerging applications of intermetallics. Intermetallics, 2000, 8(9–11): 1313.

[11]

Enayati MH, Salehi M. Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying. J. Mater. Sci., 2005, 40(15): 3933.

[12]

Schneibel JH, Tortorelli PF, Ritchie RO, Kruzic JJ. Optimization of Mo-Si-B Intermetallics. Metall. Mater. Trans. A, 2005, 36(3): 525.

[13]

J.Y. Guo, Y.F. Li, C. Li, L.M. Yu, H.J. Li, Z.M. Wang, and Y.C. Liu, Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys, Mater. Charact., 171(2021), art. No. 110748.

[14]

Duan LJ, Liu YC. Relationships between elastic constants and EAM/FS potential functions for cubic crystals. Acta Metall. Sin., 2020, 56(1): 112.

[15]

Polkowski W, Jöźwik P, Karczewski K, Bojar Z. Evolution of crystallographic texture and strain in a fine-grained Ni3Al (Zr, B) intermetallic alloy during cold rolling. Arch. Civ. Mech. Eng., 2014, 14(4): 550.

[16]

Pei JL, Li YF, Li C, Wang ZM, Liu YC, Li HJ. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys. J. Mater. Sci. Technol., 2020, 52, 162.

[17]

Deevi SC, Sikka VK. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics, 1996, 4(5): 357.

[18]

Sheng LY, Zhang W, Guo JT, Wang ZS, Ovcharenko VE, Zhou LZ, Ye HQ. Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion. Intermetallics, 2009, 17(7): 572.

[19]

J.G. Yu, Q.X. Zhang, and Z.F. Yue, Tensile mechanical properties of Ni3Al nanowires at intermediate temperature, RSC Adv., 4(2014), No. 40, art. No. 20789.

[20]

Raju SV, Godwal BK, Singh AK, Jeanloz R, Saxena SK. High-pressure strengths of Ni3Al and Ni–Al–Cr. J. Alloys Compd., 2018, 741, 642.

[21]

Liu CT, White CL, Horton JA. Effect of boron on grain-boundaries in Ni3Al. Acta Metall., 1985, 33(2): 213.

[22]

Motejadded HB, Soltanieh M, Rastegari S. An investigation about the effect of annealing conditions on microstructure in a Ni3Al base alloy. J. Alloys Compd., 2009, 486(1–2): 881.

[23]

Wang JS. Dislocation nucleation and the intrinsic fracture behavior of L12 intermetallic alloys. Acta Mater., 1998, 46(8): 2663.

[24]

Shee SK, Pradhan SK, De M. Effect of alloying on the microstructure and mechanical properties of Ni3Al. J. Alloys Compd., 1998, 265(1–2): 249.

[25]

Aoki K, Izumi O. On the ductility of the intermetallic compound Ni3Al. Trans. Jpn. Inst. Met., 1978, 19(4): 203.

[26]

George EP, Liu CT, Lin H, Pope DP. Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al. Mater. Sci. Eng. A, 1995, 192–193, 277.

[27]

Gu YF, Lin DL, Lin TL, Guo JT. Ductilization of Ni3Al by alloying with zirconium. Scripta Mater., 1996, 35(5): 609.

[28]

George EP, Liu CT, Pope DP. Environmental embrittlement: The major cause of room-temperature brittleness in poly-crystalline Ni3Al. Scripta Metall. Mater., 1992, 27(3): 365.

[29]

Guo JT, Li H, Sun C. Effect of Zr, Cr and B addictives on microstructure and mechanical properties of Ni3Al alloys. Acta Metall. Sin. Engl. Ed., 1990, 3(3): 170.

[30]

Li YF, Guo JT, Zhou LZ, Ye HQ. Effect of recrystallization on room-temperature mechanical properties of Zr-doped Ni3Al alloy. Mater. Lett., 2004, 58(12–13): 1853.

[31]

Baker I. Improving the ductility of intermetallic compounds by particle-induced slip homogenization. Scripta Mater., 1999, 41(4): 409.

[32]

Schulson EM, Weihs TP, Viens DV, Baker I. The effect of grain size on the yield strength of Ni3Al. Acta Metall., 1985, 33(9): 1587.

[33]

Takeyama M, Liu CT. Effect of grain size on yield strength of Ni3Al and other alloys. J. Mater. Res., 1988, 3(4): 665.

[34]

Jözwik P, Bojar Z. Analysis of grain size effect on tensile properties of Ni3Al based intermetallic strips. Arch. Metall. Mater., 2007, 52(2): 321.

[35]

Zhang X, Li HW, Zhan M, Zheng ZB, Gao J, Shao GD. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations. J. Mater. Sci. Technol., 2020, 36, 79.

[36]

Chen K, Rui SY, Wang F, Dong JX, Yao ZH. Micro-structure and homogenization process of as-cast GH4169D alloy for novel turbine disk. Int. J. Miner. Metall. Mater., 2019, 26(7): 889.

[37]

Sani SA, Arabi H, Kheirandish S, Ebrahimi G. Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ;’-cobalt-based superalloy. Int. J. Miner. Metall. Mater., 2019, 26(2): 222.

[38]

Liu YC, Zhang HJ, Guo QY, Zhou XS, Ma ZQ, Huang Y, Li HJ. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency. Acta Metall. Sin., 2018, 54(11): 1653.

[39]

Cui DL, Xie XY, Li SS, Zhang H, Gong SK. Heat treatment of a Ni3Al-based single crystal alloy IC32. Mater. Sci. Forum, 2013, 747–748, 665.

[40]

Kong ZG, Ji L, Li SS, Han YF, Xu HB. Effect of heat treatment on microstructure and mechanical properties for a Ni3Al base single crystal alloy DDIC6. Mater. Sci. Forum, 2007, 546–549, 1443.

[41]

Karakose E, Keskin M. Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy. Int. J. Mater. Res., 2015, 106(1): 29.

[42]

Lapin J. Effect of ageing on the microstructure and mechanical behaviour of a directionally solidified Ni3Al-based alloy. Inter-metallics, 1997, 5(8): 615.

[43]

Lee D. Effects of solution heat treatment on the microstructure, oxidation, and mechanical properties of a cast Ni3Al-based in-termetallic alloy. Met. Mater. Int., 2006, 12(2): 153.

[44]

Ai C, Zhai TT, Ou MQ, Zhang H, Liu L, Li SS, Gong SK. Influence of heat treatment on microstructure of Ni3Al based single crystal superalloy. Mater. Res. Innov., 2014, 18(Suppl. 4): 309.

[45]

Wu J, Liu YC, Li C, Wu YT, Xia XC, Li HJ. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr content. Acta Metall. Sin., 2020, 56(1): 21.

[46]

Mishima Y, Ochiai S, Suzuki T. Lattice parameters of Ni(γ), Ni3Al(γ;’) and Ni3Ga(γ;’) solid solutions with additions of transition and B-subgroup elements. Acta Metall., 1985, 33(6): 1161.

[47]

F. Zhou, Y. Zhou, J. Wang, J.M. Liang, H.Y. Gao, and M.D. Kang, Enlightening from γ, γ;’ and β phase transformations in Al–Co–Ni alloy system: A review, Curr. Opin. Solid State Mater. Sci., 23(2019), No. 6, art. No. 100784.

[48]

Gale W, Abdo ZM. Cast, and aged β-NiAl-β;’-Ni2AlTi-γ;’-Ni3Al-α-Cr alloys: A microstructural and mechanical properties investigation. J. Mater. Sci., 1999, 34(18): 4425.

[49]

Liu CT, Jemian W, Inouye H, Cathcart JV, David SA, Horton JA, Santella ML. Initial Development of Nickel and Nickel-Iron Aluminides for Structural Uses, 1984, Tennessee, Oak Ridge National Laboratory

[50]

Yang R, Leake JA, Cahn RW. Chromium precipitation from β-Ni(Al, Ti) and γ;’-Ni3(Al, Ti) in the alloy (Ni70Al20Ti10)0.9Cr0.1. Philos. Mag. A, 1992, 65(4): 961.

[51]

Liu CT, Sikka VK. Nickel aluminides for structural use. JOM, 1986, 38(5): 19.

[52]

Pérez P, González P, Garcés G, Caruana G, Adeva P. Microstructure and mechanical properties of a rapidly solidified Ni3Al–Cr alloy after thermal treatments. J. Alloys Compd., 2000, 302(1–2): 137.

[53]

Wu J, Li C, Liu YC, Wu YT, Guo QY, Li HJ, Wang HP. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy. Mater. Sci. Eng. A, 2019, 743, 623.

[54]

J.Q. Li, Y.Y. Peng, J.B. Zhang, S. Jiang, S.P. Yin, J. Ding, Y.T. Wu, J. Wu, X.Q. Chen, X.C. Xia, X. He, and Y.C. Liu, Cyclic oxidation behavior of Ni3Al-based superalloy, Vacuum, 169(2019), art. No. 108938.

[55]

Subramani P, Manikandan M. Development of gas tungsten arc welding using current pulsing technique to preclude chromium carbide precipitation in aerospace-grade alloy 80A. Int. J. Miner. Metall. Mater., 2019, 26(2): 210.

[56]

Zhang YG, Han YF, Chaturvedi MC. TEM studies of ETA carbide precipitate particles in a DS cast Ni3Al base super-alloy. Mater. Charact., 1995, 34(3): 205.

[57]

Zhang XE, Luo HL, Li SP, Cao X, Li SQ. Effection of alloying elements on microstructures of MX246 and MX246A Ni3Al-based alloys. J. Iron Steel Res. Int., 2007, 14(5): 45.

[58]

Wright RN, Knibloe JR. The influence of alloying on the microstructure and mechanical properties of P/M Ni3Al. Acta Metall. Mater., 1990, 38(10): 1993.

[59]

Li H, Guo JT, Tan MH, Sun C, Lai WH, Wang SH. Microstructure and mechanical properties of Ni3Al-Fe based alloy. Acta Metall. Sin. Engl. Ed., 1993, 6(1): 40.

[60]

Ai C, Li SS, Zhang H, Liu L, Ma Y, Pei YL, Gong SK. Effect of withdrawal rate on microstructure and lattice misfit of a Ni3Al based single crystal superalloy. J. Alloys Compd., 2014, 592, 164.

[61]

Li P, Li SS, Han YF. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX. Intermetallics, 2011, 19(2): 182.

[62]

Wang JT, Luo HL, Li SP, Cao X. Effect of solution treatment on stress rupture property of MX246A alloy. Mater. Heat Treat., 2010, 39(12): 155.

[63]

Ai C, Ou MQ, Zhao XB, Pei YL, Zhang H, Liu L, Li SS, Gong SK. Effect of heat treatment and long-term age on microstructure of a Ni3Al-based single crystal superalloy. Mater. Res. Innov., 2015, 19(4): S209.

[64]

Singh JB, Verma A, Thota MK, Chakravartty JK. Brittle failure of Alloy 693 at elevated temperatures. Mater. Sci. Eng. A, 2014, 616, 88.

[65]

Li YF, Li C, Wu J, Wu YT, Ma ZQ, Yu LM, Li HJ, Liu YC. Formation of multiply twinned martensite plates in rapidly solidified Ni3Al-based superalloys. Mater. Lett., 2019, 250, 147.

[66]

Wu J, Li C, Liu YC, Xia XC, Wu YT, Ma ZQ, Wang HP. Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy. Intermetallics, 2019, 109, 48.

[67]

Feng YF, Zhou XM, Zou JW, Tian GF. Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96. Int. J. Miner. Metall. Mater., 2019, 26(4): 493.

[68]

Feng HQ, Yang ZB, Bai YT, Zhang L, Liu YL. Effect of Cr content and cooling rate on the primary phase of Al-2.5Mn alloy. Int. J. Miner. Metall. Mater., 2019, 26(12): 1551.

[69]

Y.F. Li, C. Li, Y.T. Wu, J. Wu, Z.Q. Ma, H.J. Li, and Y.C. Liu, Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure, Vacuum, 171(2020), art. No. 109038.

[70]

Li YF, Li C, Wu J, Li HJ, Liu YC, Wang HP. Microstructural feature and evolution of rapidly solidified Ni3Al-based superalloys. Acta Metall. Sin. Engl. Lett., 2019, 32(6): 764.

[71]

Duan XT, Li SP, Luo HL, Wang JT. Heat treatment process for Ni3Al-based wrought superalloy. J. Iron Steel Res., 2015, 27(11): 60.

[72]

Hadi M, Kamali AR. Investigation on hot workability and mechanical properties of modified IC-221M alloy. J. Alloys Compd., 2009, 485(1–2): 204.

[73]

Jokisaari AM, Naghavi SS, Wolverton C, Voorhees PW, Heinonen OG. Predicting the morphologies of γ;’ precipitates in cobalt-based superalloys. Acta Mater., 2017, 141, 273.

[74]

Masoumi F, Jahazi M, Shahriari D, Cormier J. Coarsening and dissolution of γ;’ precipitates during solution treatment of AD730™ Ni-based superalloy: Mechanisms and kinetics models. J. Alloys Compd., 2016, 658, 981.

[75]

Kim MT, Kim DS, Oh OY. Effect of γ;’ precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy. Mater. Sci. Eng. A, 2008, 480(1–2): 218.

[76]

Liu F, Yang GC. Effect of microstructure and γ;’ precipitate from undercooled DD3 superalloy on mechanical properties. J. Mater. Sci., 2002, 37(13): 2713.

[77]

Qiao Z, Li C, Zhang HJ, Liang HY, Liu YC, Zhang Y. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations. Int. J. Miner. Metall. Mater., 2020, 27(8): 1123.

[78]

Reed RC. The Superalloys: Fundamentals and Applications, 2006, Cambridge, Cambridge University Press

[79]

J. Wu, C. Li, Y.C. Liu, X.C. Xia, Z.X. Zheng, and H.P. Wang, Precipitation of intersected plate-like γ;’ phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy, Mater. Sci. Eng. A, 767(2019), art. No. 138439.

[80]

Lee D, Santella ML, Anderson IM, Pharr GM. Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy. Intermetallics, 2005, 13(2): 187.

[81]

Li QY, Tian SQ, Yu HC, Tian N, Su Y, Li Y. Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy. Mater. Sci. Eng. A, 2015, 633, 20.

[82]

Dong XM, Zhang XL, Du K, Zhou YZ, Jin T, Ye HQ. Microstructure of Carbides at Grain Boundaries in Nickel Based Superalloys. J. Mater. Sci. Technol., 2012, 28(11): 1031.

[83]

Xia XC, Peng YY, Ding J, Li C, Zhang JB, Chen XG, He X, Yin SP, Liu YC. Precipitation and growth behavior of gamma prime phase in Ni3Al-based superalloy under thermal exposure. J. Mater. Sci., 2019, 54(20): 13368.

[84]

Lee DY. An investigation of thermal aging effects on the mechanical properties of a Ni3Al-based alloy by nanoindentation. J. Alloys Compd., 2009, 480(2): 347.

[85]

Li CJ, Guo G, Yuan ZJ, Xuan WD, Li X, Zhong YB, Ren ZM. Chemical segregation and coarsening of γ;’ precipitates in Ni-based superalloy during heat treatment in alternating magnetic field. J. Alloys Compd., 2017, 720, 272.

[86]

Motejadded HB, Soltanieh M, Rastegari S. Coarsening kinetics of γ;’ precipitates in dendritic regions of a Ni3Al base alloy. J. Mater. Sci. Technol., 2012, 28(3): 221.

[87]

X.C. Wu, Y.S. Li, W. Liu, Z.Y. Hou, and M.Q. Huang, Dynamics evolution of γ;’ precipitates size and composition interface between γ/γ;’ phases in Ni–Al alloy at different aging temperatures, Rare Met., (2016), p. 1.

[88]

Pichon L, Dubois JB, Chollet S, Larek F, Cormie J, Templier C. Low temperature nitriding behaviour of Ni3Al-like γ;’ precipitates in nickel-based superalloys. J. Alloys Compd., 2019, 771, 176.

[89]

Li M, Song JX, Li SS, Han YF. Effects of long-term aging at 1070°C on microstructure of Ni3Al-base single-crystal alloy IC6SX. Rare Met., 2011, 30, 345.

[90]

J. Wu, C. Li, Y.C. Liu, Y.T. Wu, X.C. Xia, Y.F. Li, and H.P. Wang, Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy, Mater. Sci. Eng. A, 763(2019), art. No. 138158.

[91]

Wu YT, Liu YC, Li C, Xia XC, Wu J, Li HJ. Coarsening behavior of γ;’ precipitates in the γ;’-γ area of a Ni3Al-based alloy. J. Alloys Compd., 2019, 771, 526.

[92]

Lapin J, Važo A. Coarsening kinetics of α- and γ;’-precipit-ates in a multiphase intermetallic Ni–Al–Cr–Ti type alloy with additions of Mo and Zr. Scripta Mater., 2004, 50(5): 571.

[93]

Lapin J, Pelachová T, Bajana O. Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni–Al–Cr–Ti alloy with β-γ’-γ-α structure. Intermetallics, 2000, 8(12): 1417.

[94]

Lee D, Santella ML. Thermal aging effects on the mechanical properties of as-cast Ni3Al-based alloy. Mater. Sci. Eng. A, 2006, 428(1–2): 196.

[95]

Han YF, Li SH, Jin Y, Chaturvedi MC. Effect of 900–1150 °C aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6. Mater. Sci. Eng. A, 1995, 192–193, 899.

[96]

Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Effect of initial microstructure on the hot deformation behavior of a Ni3Al-based alloy, Intermetallics, 113(2019), art. No. 106584.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/