Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures

Thongsuk Sichumsaeng , Nutthakritta Phromviyo , Santi Maensiri

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1038 -1047.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1038 -1047. DOI: 10.1007/s12613-020-2174-1
Article

Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures

Author information +
History +
PDF

Abstract

We report the electrochemical performance of Ni(OH)2 on a gas diffusion layer (GDL). The Ni(OH)2 working electrode was successfully prepared via a simple method, and its electrochemical performance in 1 M NaOH electrolyte was investigated. The electrochemical results showed that the Ni(OH)2/GDL provided the maximum specific capacitance value (418.11 F·g−1) at 1 A·g−1. Furthermore, the Ni(OH)2 electrode delivered a high specific energy of 17.25 Wh·kg−1 at a specific power of 272.5 W·kg−1 and retained about 81% of the capacitance after 1000 cycles of galvanostatic charge-discharge (GCD) measurements. The results of scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed the occurrence of sodium deposition after long-time cycling, which caused the reduction in the specific capacitance. This study results suggest that the light-weight GDL, which can help overcome the problem of the oxide layer on metal-foam substrates, is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.

Keywords

hydrothermal synthesis / nickel hydroxide / gas diffusion layer / sodium deposition / electrochemical capacitor

Cite this article

Download citation ▾
Thongsuk Sichumsaeng, Nutthakritta Phromviyo, Santi Maensiri. Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 1038-1047 DOI:10.1007/s12613-020-2174-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater., 2008, 7(11): 845.

[2]

Huang YL, Li YY, Gong QM, Zhao GL, Zheng PJ, Bai JF, Gan JN, Zhao M, Shao Y, Wang DZ, Liu L, Zou GS, Zhuang DM, Liang J, Zhu HW, Nan CW. Hierarchically mesostructured aluminum current collector for enhancing the performance of supercapacitors. ACS Appl. Mater. Interfaces, 2018, 10(19): 16572.

[3]

Wang HX, Zhang W, Drewett NE, Zhang HB, Huang KK, Feng SH, Li XL, Kim J, Yoo S, Deng T, Liu SJ, Wang D, Zheng WT. Unifying miscellaneous performance criteria for a prototype supercapacitor via Co(OH)2 active material and current collector interactions. J. Microsc., 2017, 267(1): 34.

[4]

Wang HX, Wang D, Deng T, Zhang XY, Zhang C, Qin TT, Cheng DY, Zhao Q, Xie YN, Shao LD, Zhang HB, Zhang W, Zheng WT. Insight into graphene/hydroxide compositing mechanism for remarkably enhanced capacity. J. Power Sources, 2018, 399, 238.

[5]

Grdeń M, Alsabet M, Jerkiewicz G. Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces, 2012, 4(6): 3012.

[6]

Chaudhari NK, Jin H, Kim B, Lee K. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9(34): 12231.

[7]

Xing W, Qiao SZ, Wu XZ, Gao XL, Zhou J, Zhuo SP, Hartono SB, Hulicova-Jurcakova D. Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources, 2011, 196(8): 4123.

[8]

Gao Y, Sun GQ, Wang SL, Zhu S. Carbon nanotubes based gas diffusion layers in direct methanol fuel cells. Energy, 2010, 35(3): 1455.

[9]

Gurau V, Bluemle MJ, Castro ESD, Tsou YM, Mann JA, Zawodzinski TA. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers). J. Power Sources, 2006, 160(2): 1156.

[10]

Bapat CJ, Thynell ST. Effect of anisotropic thermal conductivity of the GDL and current collector rib width on two-phase transport in a PEM fuel cell. J. Power Sources, 2008, 179(1): 240.

[11]

Lim C, Wang CY. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim. Acta, 2004, 49(24): 4149.

[12]

Arbizzani C, Beninati S, Lazzari M, Mastragostino M. Carbon paper as three-dimensional conducting substrate for tin anodes in lithium-ion batteries. J. Power Sources, 2005, 141(1): 149.

[13]

El-kharouf A, Mason TJ, Brett DJL, Pollet BG. Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells. J. Power Sources, 2012, 218, 393.

[14]

L.Y. Zhang and H. Gong, A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors, Sci. Rep., 5(2016), art. No. 18108.

[15]

Singh U, Banerjee A, Mhamane D, Suryawanshi A, Upadhyay KK, Ogale S. Surfactant free gram scale synthesis of mesoporous Ni(OH)2-r-GO nanocomposite for high rate pseudocapacitor application. RSC Adv., 2014, 4(75): 39875.

[16]

Lu ZY, Chang Z, Zhu W, Sun XM. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun., 2011, 47(34): 9651.

[17]

Sichumsaeng T, Chanlek N, Maensiri S. Effect of various electrolytes on the electrochemical properties of Ni(OH)2 nano-structures. Appl. Surf. Sci., 2018, 446, 177.

[18]

Liu Y, Zhou JY, Chen LL, Zhang P, Fu WB, Zhao H, Ma YF, Pan XJ, Zhang ZX, Han WH, Xie EQ. Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl. Mater. Interfaces, 2015, 7(42): 23515.

[19]

Jiang YW, Chen JW, Zhang J, Zeng YP, Wang YC, Zhou FL, Kiani M, Wang RL. Controlled decoration of Pd on Ni(OH)2 nanoparticles by atomic layer deposition for high ethanol oxidation activity. Appl. Surf. Sci., 2017, 420, 214.

[20]

Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. Crroon, 2007, 45(8): 1686.

[21]

Hu GX, Li CX, Gong H. Capacitance decay of nanoporous nickel hydroxide. J. Power Sources, 2010, 195(19): 6977.

[22]

K.A. Owusu, L.B. Qu, J.T. Li, Z.Y. Wang, K.N. Zhao, C. Yang, K.M. Hercule, C. Lin, C.W. Shi, Q.L. Wei, L. Zhou, and L.Q. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors, Nat. Commun., 8(2017), art. No. 14264.

[23]

Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous. J. Phys. Chem. B, 1997, 101(39): 7717.

[24]

Forghani M, Donne SW. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior. J. Electrochem. Soc., 2018, 165(3): A664.

[25]

Sankar KV, Surendran S, Pandi K, Allin AM, Nithya VD, Lee YS, Selvan RK. Studies on the electrochemical intercalation/de-intercalation mechanism of NiMn2O4 for high stable pseudocapacitor electrodes. RSC Adv., 2015, 5(35): 27649.

[26]

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci., 2014, 7(5): 1597.

[27]

Du DW, Lan R, Xie K, Wang HL, Tao SW. Synthesis of Li2Ni2(MoO4)3 as a high-performance positive electrode for asymmetric supercapacitors. RSC Adv., 2017, 7(22): 13304.

[28]

Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes, Electrochim. Electrochim. Acta, 1990, 35(1): 263.

[29]

Senthilkumar B, Sankar KV, Vasylechko L, Lee YS, Selvan RK. Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv., 2014, 4(95): 53192.

[30]

Zhao DD, Bao SJ, Zhou WJ, Li HL. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun., 2007, 9(5): 869.

[31]

Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS. Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J. Power Sources, 2009, 188(1): 338.

[32]

Huang QH, Wang XY, Li J, Dai CL, Gamboa S, Sebastian PJ. Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors. J. Power Sources, 2007, 164(1): 425.

[33]

Kazemi SH, Malae K. Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors. J. Iran. Chem. Soc., 2017, 14(2): 419.

[34]

Alhebshi NA, Rakhi RB, Alshareef HN. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. J. Mater. Chem. A, 2013, 1(47): 14897.

[35]

Pardo FN, Benetti D, Zhao HG, Castaño VM, Vomiero A, Rosei F. Platinum/palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer. J. Power Sources, 2016, 335, 138.

[36]

Meráz JS, Fernández F, Magaña LF. A method for the measurement of the resistance of electrolytic solutions. J. Electrochem. Soc., 2005, 152(4): E135.

[37]

Wang Q, Moser JE, Grätzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 2005, 109(31): 14945.

[38]

Wang J, Gao Z, Li ZS, Wang B, Yan YX, Liu Q, Mann T, Zhang ML, Jiang ZH. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem., 2011, 184(6): 1421.

[39]

Li T, Gulzar U, Bai X, Lenocini M, Prato M, Aifantis KE, Capiglia C, Zaccaria RP. Insight on the failure mechanism of Sn electrodes for sodium-ion batteries: Evidence of pore formation during sodiation and crack formation during desodiation. ACS Appl. Energy Mater., 2019, 2(1): 860.

[40]

He SJ, Hu XW, Chen SL, Hu H, Hanif M, Hou HQ. Needle-like polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors. J. Mater. Chem., 2012, 22(11): 5114.

[41]

S.M. Kim, C.Y. Ahn, Y.H. Cho, S. Kim, W. Hwang, S. Jang, S. Shin, G. Lee, Y.E. Sung, and M. Choi, High-performance fuel cell with stretched catalyst-coated membrane: One-step formation of cracked electrode, Sci. Rep., 6(2016), art. No. 26503.

[42]

A. Ghosh, S. Ghosh, G.M. Seshadhri, and S. Ramaprabhu, Green synthesis of nitrogen- doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications, Sci. Rep., 9(2019), art. No. 5187.

[43]

Zhang GG, Wang L, Liu Y, Li WF, Yu F, Lu W, Huang HT. Cracks bring robustness: A pre-cracked NiO nanosponge electrode with greatly enhanced cycle stability and rate performance. J. Mater. Chem. A, 2016, 4(21): 8211.

[44]

Y. Yui, M. Hayashi, and J. Nakamura, In situ microscopic observation of sodium deposition/dissolution on sodium electrode, Sci. Rep., 6(2016), art. No. 22406.

[45]

M.Q. Zhu, S.M. Li, B. Li, Y.J. Gong, Z.G. Du, and S.B. Yang, Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes, Sci. Adv., 5(2019), No. 4, art. No. eaau6264.

[46]

B. Sun, C. Pompe, S. Dongmo, J.Q. Zhang, K. Kretschmer, D. Schröder, J. Janek, and G.X. Wang, Challenges for developing rechargeable room-temperature sodium oxygen batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1800110.

[47]

Mei WX, Chen HD, Sun JH, Wang QS. The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model. Sustainable Energy Fuels, 2019, 3(1): 148.

[48]

Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, 45(15–16): 2483.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/