Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors

Tao Yang , Ya-peng Zheng , Kuo-Chih Chou , Xin-mei Hou

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1030 -1037.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 1030 -1037. DOI: 10.1007/s12613-020-2173-2
Article

Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors

Author information +
History +
PDF

Abstract

Lead halide perovskites have received increasing attention recently as a candidate material in various optoelectronic areas because of their high performance as light absorbers. Herein, we report the growth of CsPbI3 nanobelts via a solution process. A single-crystalline CsPbI3 nanobelt with uniform morphology can be achieved by controlling the amount of PbI2. A single-crystalline CsPbI3 nanobelt possesses a mean width, length, and thickness of 100 nm, 5 µm, and 20 nm, respectively. In this work, photodetectors (PDs) based on individual CsPbI3 nanobelts are constructed and found to perform well with an external quantum efficiency and responsivity of 2.39 × 105% and 770 A/W, respectively. The PDs also show a high detectivity of up to 3.12 × 1012 Jones, which is at par with that of Si PDs. The PDs developed in this work exhibit great promise in various optoelectronic nanodevices.

Keywords

photodetector / cesium lead triiodide / perovskite / nanobelt / detectivity

Cite this article

Download citation ▾
Tao Yang, Ya-peng Zheng, Kuo-Chih Chou, Xin-mei Hou. Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 1030-1037 DOI:10.1007/s12613-020-2173-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476.

[2]

Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692.

[3]

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. de Angelis, and H.G. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater., 5(2015), No. 15, art. No. 1500477.

[4]

Yang J, Siempelkamp BD, Liu D, Kelly TL. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9(2): 1955.

[5]

Liu P, He XX, Ren JH, Liao Q, Yao JN, Fu HB. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano, 2017, 11(6): 5766.

[6]

Saidaminov MI, Haque MA, Savoie M, Abdelhady AL, Cho N, Dursun I, Buttner U, Alarousu E, Wu T, Bakr OM. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater., 2016, 28(37): 8144.

[7]

Yang T, Zheng YP, Du ZT, Liu WN, Yang ZB, Gao FM, Wang L, Chou KC, Hou XM, Yang WY. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano, 2018, 12(2): 1611.

[8]

L. Meng, E.P. Yao, Z.R. Hong, H.J. Chen, P.Y. Sun, Z.L. Yang, G. Li, and Y. Yang, Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage, Adv. Mater., 29(2017), No. 4, art. No. 1603826.

[9]

Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Gratzel M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309): 206.

[10]

D.W. Zhao, Y. Yu, C.L. Wang, W.Q. Liao, N. Shrestha, C.R. Grice, A.J. Cimaroli, L. Guan, R.J. Ellingson, K. Zhu, X.Z. Zhao, R.G. Xiong, and Y.F. Yan, Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for allperovskite tandem solar cells, Nat. Energy, 2(2017), No. 4, art. No. 17018.

[11]

Li XM, Yu DJ, Cao F, Gu Y, Wei Y, Wu Y, Song JZ, Zeng HB. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater., 2016, 26(32): 5903.

[12]

M.I. Saidaminov, M.A. Haque, J. Almutlaq, S. Sarmah, X.H. Miao, R. Begum, A.A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O.F. Mohammed, T. Wu, and O.M. Bakr, Inorganic lead halide perovskite single crystals: Phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection, Adv. Opt. Mater., 5(2017), No. 2, art. No. 1600704.

[13]

Waleed A, Tavakoli MM, Gu LL, Hussain S, Zhang DQ, Poddar S, Wang ZY, Zhang RJ, Fan ZY. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett., 2017, 17(8): 4951.

[14]

Nie WY, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522.

[15]

Dong QF, Fang YJ, Shao YC, Mulligan P, Qiu J, Cao L, Huang JS. Solar cells. Electron-hole diffusion lengths > 175 um in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967.

[16]

Deng W, Zhang XJ, Huang LM, Xu XZ, Wang L, Wang JC, Shang QX, Lee ST, Jie JS. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater., 2016, 28(11): 2201.

[17]

Xing J, Liu XF, Zhang Q, Ha ST, Yuan YW, Shen C, Sum TC, Xiong QH. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett., 2015, 15(7): 4571.

[18]

Zhu HM, Fu YP, Meng F, Wu XX, Gong ZZ, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 2015, 14(6): 636.

[19]

Trots DM, Myagkota SV. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids, 2008, 69(10): 2520.

[20]

Møller CK. Crystal structure and photoconductivity of cæsium plumbohalides. Nature, 1958, 182(4647): 1436.

[21]

Hu PA, Wen ZZ, Wang LF, Tan PH, Xiao K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7): 5988.

[22]

Ma L, Hu W, Zhang QL, Ren PY, Zhuang XJ, Zhou H, Xu JY, Li HL, Shan ZP, Wang XX, Liao L, Xu HQ, Pan AL. Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett., 2014, 14(2): 694.

[23]

L.T. Dou, Y. Yang, J.B. You, Z.R. Hong, W.H. Chang, G. Li, and Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity, Nat. Commun., 5(2014), art. No. 5404.

[24]

Gong X, Tong MH, Xia YJ, Cai WZ, Moon JS, Cao Y, Yu G, Shieh CL, Nilsson B, Heeger AJ. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325(5948): 1665.

[25]

Panigrahi S, Basak D. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale, 2011, 3(5): 2336.

[26]

Kind H, Yan H, Messer B, Law M, Yang P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater., 2002, 14(2): 158.

[27]

Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 2007, 7(4): 1003.

[28]

Liu H, Zhang ZM, Hu LF, Gao N, Sang LW, Liao MY, Ma RZ, Xu FF, Fang XS. New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv. Opt. Mater., 2014, 2(8): 771.

[29]

Hu X, Zhang XD, Liang L, Bao J, Li S, Yang WL, Xie Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014, 24(46): 7373.

[30]

Deng H, Yang XK, Dong DD, Li B, Yang D, Yuan SJ, Qiao KK, Cheng YB, Tang J, Song HS. Flexible and semitransparent organolead triiodide perovskite network photo-detector arrays with high stability. Nano Lett., 2015, 15(12): 7963.

[31]

Dong YH, Gu Y, Zou YS, Song JZ, Xu LM, Li JH, Xue J, Li XM, Zeng HB. Improving all-inorganic per-ovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622.

[32]

Li Y, Shi ZF, Li S, Lei LZ, Ji HF, Wu D, Xu TT, Tian YT, Li XJ. High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C, 2017, 5(33): 8355.

[33]

Li XM, Yu DJ, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun ZG, Ji JP, Shen YL, Sun HD, Zeng HB. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015.

[34]

X.H. Liu, D.J. Yu, F. Cao, X.M. Li, J.P. Ji, J. Chen, X.F. Song, and H.B. Zeng, Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets, Small, 13(2017), No. 25, art. No. 1700364.

[35]

Shoaib M, Zhang XH, Wang XX, Zhou H, Xu T, Wang X, Hu XL, Liu HW, Fan XP, Zheng WH, Yang TF, Yang SZ, Zhang QL, Zhu XL, Sun LT, Pan AL. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc., 2017, 139(44): 15592.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/