Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate

Luming Chen , Yulan Zhen , Guohua Zhang , Desheng Chen , Lina Wang , Hongxin Zhao , Fancheng Meng , Tao Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 239 -247.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 239 -247. DOI: 10.1007/s12613-020-2160-7
Article

Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate

Author information +
History +
PDF

Abstract

The carbothermic reduction of vanadium titanomagnetite concentrate (VTC) with the assistance of Na2CO3 was conducted in an argon atmosphere between 1073 and 1473 K. X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction. By investigating the reaction between VTC and Na2CO3, it was concluded that molten Na2CO3 broke the structure of titanomagnetite by combining with the acidic oxides (Fe2O3, TiO2, Al2O3, and SiO2) to form a Na-rich melt and release FeO and MgO. Therefore, Na2CO3 accelerated the reduction rate. In addition, adding Na2CO3 also benefited the agglomeration of iron particles and the slag—metal separation by decreasing the viscosity of the slag. Thus, Na2CO3 assisted carbothermic reduction is a promising method for treating VTC at low temperatures.

Keywords

vanadium titanomagnetite / sodium carbonate / phase transformation / carbothermic reduction / slag—metal separation

Cite this article

Download citation ▾
Luming Chen, Yulan Zhen, Guohua Zhang, Desheng Chen, Lina Wang, Hongxin Zhao, Fancheng Meng, Tao Qi. Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(2): 239-247 DOI:10.1007/s12613-020-2160-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng F, Chen F, Guo Y, Jiang T, Travyanov A Y, Qiu G. Kinetics of hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag. JOM, 2016, 68(5): 1476.

[2]

Lv XW, Lun ZQ, Yin JQ, Bai CQ. Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior. ISIJ Int., 2013, 53(7): 1115.

[3]

Wang S, Guo YF, Jiang T, Yang L, Chen F, Zheng FQ, Xie XL, Tang MJ. Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets. JOM, 2017, 69(9): 1646.

[4]

Samanta S, Mukherjee S, Dey R. Upgrading metals via direct reduction from poly-metallic titaniferous magnetite ore. JOM, 2015, 67(2): 467.

[5]

Wang MY, Zhou SF, Wang XW, Chen BF, Yang HX, Wang SK, Luo PF. Recovery of iron from chromium vanadium-bearing titanomagnetite concentrate by direct reduction. JOM, 2016, 68(10): 2698.

[6]

Zhao YQ, Sun TC, Zhao HY, Chen C, Wang XP. Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate. Int. J. Miner. Metall. Mater., 2019, 26(2): 152.

[7]

Li XH, Kou J, Sun TC, Wu SC, Zhao YQ. Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate. Int. J. Miner. Metall. Mater., 2020, 27(3): 301.

[8]

Zhen YL, Zhang GH, Chou KC. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles. Metall. Mater. Trans. B, 2015, 46, 155.

[9]

Fu WQ, Wen YC, Xie HE. Development of intensified technologies of vanadium-bearing titanomagnetite smelting. J. Iron. Steel. Res. Int., 2011, 18(4): 7.

[10]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions. J. Non-Cryst. Solids, 2007, 353(22–23): 2214.

[11]

Shi LY, Zhen YL, Chen DS, Tao Q, Wang LN. Carbothermic reduction of vanadium-titanium magnetite in molten NaOH. ISIJ Int., 2018, 58(4): 627.

[12]

Zhang YM, Yi LY, Wang LN, Chen DS, Wang WJ, Liu YH, Zhao HX, Oi T. A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification—direct reduction coupled process. Int. J. Miner. Metal. Mater., 2017, 24(5): 504.

[13]

Zhang YM, Wang LN, Chen DS, Wang WJ, Liu YH, Zhao HX, Oi T. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite. Int. J. Miner. Metal. Mater., 2018, 25(2): 131.

[14]

Meng FC, Liu YH, Xue TY, Su Q, Wang WJ, Qi T. Structures, formation mechanisms, and ion exchange properties of alpha-, beta-, and gamma-Na2TiO3. RSC Adv., 2016, 6(113): 112625.

[15]

Chen DS, Zhao LS, Liu YH, Qi T, Wang JC, Wang LN. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. J. Hazard. Mater., 2013, 244–245, 588.

[16]

Chen DS, Song B, Wang LN, Qi T, Wang Y, Wang WJ. Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal. Miner. Eng., 2011, 24(8): 864.

[17]

Zhou LH, Zeng FH. Statistical analysis of the effect of Na2CO3 as additive on the reduction of vanadic-titanomag-netite-coal mixed pellets. Adv. Mater. Res., 2010, 97–101, 465.

[18]

Zhu ZH, Lu GQ, Yang RT. New insights into alkali-catalyzed gasification reactions of carbon: Comparison of Na2O reduction with carbon over Na and K catalysts. J. Catal., 2000, 192(1): 77.

[19]

Foley E, Mackinnon KP. Alkaline roasting of ilmenite. J. Solid State Chem., 1970, 1(3–4): 566.

[20]

V. Tathavadkar, and A. Jha, The effect of molten sodium titanate and carbonate salt mixture on the alkali roasting of ilmenite and rutile minerals, [in] VII International Conference on Molten Slags Fluxes and Salts, Cape Town, p. 255.

[21]

Lahiri A, Jha A. Kinetics and reaction mechanism of soda ash roasting of ilmenite ore for the extraction of titanium dioxide. Metall. Mater. Trans. B, 2007, 38(6): 939.

[22]

Parirenyatwa S, Escudero-Castejon L, Hara Y, Jha A, Sanchez-Segado S. Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy, 2016, 165, 213.

[23]

Li C, Reid AF, Saunders S. Nonstoichiometric alkali ferrites and aluminates in the systems NaFeO2-TiO2, KFeO2-TiO2, KAlO2-TiO2, and KAlO2-SiO2. J. Solid State Chem., 1971, 3(4): 614.

[24]

Kim JW, Lee HG. Thermal and carbothermic decomposition of Na2CO3 and Li2CO3. Metall. Mater. Trans. B, 2001, 32(1): 17.

[25]

Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R, Melançon J, Pelton AD, Petersen S. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189.

[26]

Holloway PC, Etsell TH, Murland A L. Roasting of La Oroya zinc ferrite with Na2CO3. Metall. Mater. Trans. B, 2007, 38(5): 781.

[27]

Holloway PC, Etsell TH, Murland AL. Use of secondary additives to control the dissolution of iron during Na2CO3 roasting of la ooya zinc ferrite. Metall. Mater. Trans. B, 2007, 38(5): 793.

[28]

Selivanov EN, Pikulin KV, Galkova LI, Gulyaeva RI, Petrova SA. Kinetics and mechanism of natural wolframite interactions with sodium carbonate. Int. J. Miner. Metal. Mater., 2019, 26(11): 1364.

[29]

Xu RZ, Zhang JL, Han WX, Chang ZY, Jiao KX. Effect of BaO and Na2O on the viscosity and structure of blast furnace slag. Ironmaking Steelmaking, 2020, 47(2): 168.

[30]

Tomita A. Catalysis of carbon—gas reactions. Catal. Surv. Jpn., 2001, 5(1): 17.

[31]

Pan W, Ma ZJ, Zhao ZX, Kim W H, Min DJ. Effect of Na2O on the reduction of Fe2O3 compacts with CO/CO2. Metall. Mater. Trans. B, 2012, 43(6): 1326.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/