U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method
Yuhui Liu , Meng Tang , Shuang Zhang , Yuling Lin , Yingcai Wang , Youqun Wang , Ying Dai , Xiaohong Cao , Zhibin Zhang , Yunhai Liu
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 479 -489.
U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method
To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted UO2 2+ by an electrostatic interaction; (2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; (3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.
molten salt electrolysis / 3R-MoS2 nanosheets / polypyrrole modification / adsorption / uranium
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
C. Jiang, Y. Liu, D.Z. Yuan, Y. Wang, J.B. Liu, and J.W. Chew, Investigation of the high U(VI) adsorption properties of phosphoric acid-functionalized heteroatoms-doped carbon materials, Solid State Sci., 104(2020), art. No. 106248. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
L. Lei, D.L. Huang, G.M. Zeng, M. Cheng, D.N. Jiang, C.Y. Zhou, S. Chen, and W.J. Wang, A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties, Coord. Chem. Rev., 399(2019), art. No. 213020. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Y.X. Yao, K.L. Ao, P. Lv, and Q.F. Wei, MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, Nanomaterials, 9(2019), No. 6, art. No. 844. |
| [13] |
|
| [14] |
Y.X. Zhang, S.X. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, L.M. Mei, A. Di Lieto, M. Tonelli, and J.Y. Wang, Atomic-layer molybdenum sulfide optical modulator for visible coherent light, Sci. Rep., 5(2015), art. No. 11342. |
| [15] |
|
| [16] |
W. Weng, J.R. Yang, J. Zhou, D. Gu, and W. Xiao, Template-free electrochemical formation of silicon nanotubes from silica, Adv. Sci., 7(2020), No. 17, art. No. 2001492. |
| [17] |
|
| [18] |
W. Weng, S.B. Wang, W. Xiao, and X.W. Lou, Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction, Adv. Mater., 32(2020), No. 29, art. No. 2001560. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Y.H. Liu, C. Fang, S. Zhang, W.H. Zhong, Q.L. Wei, Y.C. Wang, Y. Dai, Y.Q. Wang, Z.B. Zhang, and Y.H. Liu, Effective adsorption of uranyl ions with different MoS2-exposed surfaces in aqueous solution, Surf. Interfaces, 18(2020), art. No. 100409. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
X. Lu, Y.W. Lin, H.F. Dong, W.H. Dai, X. Chen, X.H. Qu, and X.J. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction, Sci. Rep., 7(2017), art. No. 42309. |
| [31] |
|
| [32] |
C.F. Zhong, W. Weng, X.X. Liang, D. Gu, and W. Xiao, One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation, Appl. Surf. Sci., 507(2020), art. No. 145072. |
| [33] |
J. van Baren, G.H. Ye, J.A. Yan, Z.P. Ye, P. Rezaie, P. Yu, Z. Liu, R. He, and C.H. Lui, Stacking-dependent interlayer phonons in 3R and 2H MoS2, 2D Mater., 6(2019), No. 2, art. No. 025022. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
S. Deng, C.X. Yu, J.F. Niu, J.B. Liao, and X.H. Liu, Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water, Chem. Eng. J., 392(2020), art. No. 123815. |
/
| 〈 |
|
〉 |