U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method

Yuhui Liu , Meng Tang , Shuang Zhang , Yuling Lin , Yingcai Wang , Youqun Wang , Ying Dai , Xiaohong Cao , Zhibin Zhang , Yunhai Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 479 -489.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 479 -489. DOI: 10.1007/s12613-020-2154-5
Article

U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method

Author information +
History +
PDF

Abstract

To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted UO2 2+ by an electrostatic interaction; (2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; (3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.

Keywords

molten salt electrolysis / 3R-MoS2 nanosheets / polypyrrole modification / adsorption / uranium

Cite this article

Download citation ▾
Yuhui Liu, Meng Tang, Shuang Zhang, Yuling Lin, Yingcai Wang, Youqun Wang, Ying Dai, Xiaohong Cao, Zhibin Zhang, Yunhai Liu. U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 479-489 DOI:10.1007/s12613-020-2154-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gebreyohannes BG, del Rosario Alberto V, Yimam A, Woldetinsae G, Tadesse B. Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores. Int. J. Miner. Metall. Mater., 2017, 24(7): 727.

[2]

Liu Y, Zhao ZP, Yuan DZ, Wang Y, Dai Y, Zhu YA, Chew JW. Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption. Appl. Surf. Sci., 2019, 466, 893.

[3]

Zhang ZB, Dong ZM, Wang XX, Dai Y, Cao XH, Wang YQ, Hua R, Feng HT, Chen JR, Liu YH, Hu BW, Wang XK. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies. Chem. Eng. J., 2019, 370, 1376.

[4]

C. Jiang, Y. Liu, D.Z. Yuan, Y. Wang, J.B. Liu, and J.W. Chew, Investigation of the high U(VI) adsorption properties of phosphoric acid-functionalized heteroatoms-doped carbon materials, Solid State Sci., 104(2020), art. No. 106248.

[5]

Yin TQ, Chen L, Xue Y, Zheng YH, Wang XP, Yan YD, Zhang ML, Wang GL, Gao F, Qiu M. Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl−KCl melt. Int. J. Miner. Metall. Mater., 2020, 27(12): 1657.

[6]

Rashad Mahmoud GMMR, Soliman MA. Combination of coprecipitation and foam separation processes for rapid recovery and preconcentration of cesium radionuclides from water systems. Process Saf. Environ. Prot., 2019, 130, 163.

[7]

Xiao W, Zhou P, Mao XH, Wang DH. Ultrahigh aniline-removal capacity of hierarchically structured layered manganese oxides: Trapping aniline between interlayers. J. Mater. Chem. A, 2015, 3(16): 8676.

[8]

L. Lei, D.L. Huang, G.M. Zeng, M. Cheng, D.N. Jiang, C.Y. Zhou, S. Chen, and W.J. Wang, A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties, Coord. Chem. Rev., 399(2019), art. No. 213020.

[9]

Kou Y, Zhang L, Liu B, Zhu L, Duan T. Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution. J. Radioanal. Nucl. Chem., 2020, 323(1): 641.

[10]

Macchione MA, Mendoza-Cruz R, Bazán-Diaz L, Velázquez-Salazar JJ, Santiago U, Arellano-Jiménez MJ, Perez JF, José-Yacamán M, Samaniego-Benitez JE. Electron microscopy study of the carbon-induced 2H-3R-1T phase transition of MoS2. New J. Chem., 2020, 44(4): 1190.

[11]

Luo JM, Fu KX, Sun M, Yin K, Wang D, Liu X, Crittenden JC. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces, 2019, 11(42): 38789.

[12]

Y.X. Yao, K.L. Ao, P. Lv, and Q.F. Wei, MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, Nanomaterials, 9(2019), No. 6, art. No. 844.

[13]

Dhar S, Kranthi Kumar V, Choudhury TH, Shivashankar SA, Raghavan S. Chemical vapor deposition of MoS2 layers from Mo−S−C−O−H system: Thermodynamic modeling and validation. Phys. Chem. Chem. Phys., 2016, 18(22): 14918.

[14]

Y.X. Zhang, S.X. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, L.M. Mei, A. Di Lieto, M. Tonelli, and J.Y. Wang, Atomic-layer molybdenum sulfide optical modulator for visible coherent light, Sci. Rep., 5(2015), art. No. 11342.

[15]

Dash A, Vaßen R, Guillon O, Gonzalez-Julian J. Molten salt shielded synthesis of oxidation prone materials in air. Nat. Mater., 2019, 18(5): 465.

[16]

W. Weng, J.R. Yang, J. Zhou, D. Gu, and W. Xiao, Template-free electrochemical formation of silicon nanotubes from silica, Adv. Sci., 7(2020), No. 17, art. No. 2001492.

[17]

Pang D, Weng W, Zhou J, Gu D, Xiao W. Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts. J. Energy Chem., 2021, 55, 102.

[18]

W. Weng, S.B. Wang, W. Xiao, and X.W. Lou, Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction, Adv. Mater., 32(2020), No. 29, art. No. 2001560.

[19]

Weng W, Tang LZ, Xiao W. Capture and electro-splitting of CO2 in molten salts. J. Energy Chem., 2019, 28, 128.

[20]

Ahmadi E, Suzuki RO, Kikuchi T, Kaneko T, Yashima Y. Towards a sustainable technology for production of extrapure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2. Int. J. Miner. Metall. Mater., 2020, 27(12): 1635.

[21]

Dou YP, Tang DY, Yin HY, Wang DH. Electrochemical preparation of the Fe-Ni36 Invar alloy from a mixed oxides precursor in molten carbonates. Int. J. Miner. Metall. Mater., 2020, 27(12): 1695.

[22]

Tian DH, Han ZC, Wang MY, Jiao SQ. Direct electrochemical N-doping to carbon paper in molten LiCl−KCl−Li3N. Int. J. Miner. Metall. Mater., 2020, 27(12): 1687.

[23]

Luo HJ, Xue Y, Zheng YH, Yan YD, Ma FQ, Zhang ML, Yin TQ, Gao F, Qiu M. Controllable preparation of carbon materials with different morphologies assisted by molten salt electrolysis. ECS J. Solid State Sci. Technol., 2019, 8(12): M122.

[24]

Jiang R, Pi L, Deng BW, Hu LY, Liu XL, Cui JX, Mao XH, Wang DH. Electric field-driven interfacial alloying for in situ fabrication of nano-Mo2C on carbon fabric as cathode toward efficient hydrogen generation. ACS Appl. Mater. Interfaces, 2019, 11(42): 38606.

[25]

Liu YH, Jing XY, Zhang ML, Yan YD, Ji DB, Li P, Xu HB, Xue Y. Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl−KCl−(NH4)6Mo7O24−KSCN melt. Electrochimica Acta, 2018, 271, 252.

[26]

Y.H. Liu, C. Fang, S. Zhang, W.H. Zhong, Q.L. Wei, Y.C. Wang, Y. Dai, Y.Q. Wang, Z.B. Zhang, and Y.H. Liu, Effective adsorption of uranyl ions with different MoS2-exposed surfaces in aqueous solution, Surf. Interfaces, 18(2020), art. No. 100409.

[27]

Bhaumik M, Maity A, Srinivasu VV, Onyango MS. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mater., 2011, 190(1–3): 381.

[28]

Xu YL, Chen JY, Chen R, Yu PL, Guo S, Wang XF. Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent. Water Res., 2019, 160, 148.

[29]

Zhong CN, Su SZ, Xu L, Liu Q, Zhang HS, Yang PP, Zhang ML, Bai XF, Wang J. Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater. Colloids Surf. A, 2019, 562, 329.

[30]

X. Lu, Y.W. Lin, H.F. Dong, W.H. Dai, X. Chen, X.H. Qu, and X.J. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction, Sci. Rep., 7(2017), art. No. 42309.

[31]

Chang K, Hai X, Pang H, Zhang HB, Shi L, Liu GG, Liu HM, Zhao GX, Li M, Ye JH. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater., 2016, 28(45): 10033.

[32]

C.F. Zhong, W. Weng, X.X. Liang, D. Gu, and W. Xiao, One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation, Appl. Surf. Sci., 507(2020), art. No. 145072.

[33]

J. van Baren, G.H. Ye, J.A. Yan, Z.P. Ye, P. Rezaie, P. Yu, Z. Liu, R. He, and C.H. Lui, Stacking-dependent interlayer phonons in 3R and 2H MoS2, 2D Mater., 6(2019), No. 2, art. No. 025022.

[34]

Manivasagan P, Quang Bui N, Bharathiraja S, Santha Moorthy M, Oh YO, Song K, Seo H, Yoon M, Oh J. Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci. Rep., 2017, 7, 43593.

[35]

Li XC, Jiang GL, He GH, Zheng WJ, Tan Y, Xiao W. Preparation of porous PPy−TiO2 composites: Improved visible light photoactivity and the mechanism. Chem. Eng. J., 2014, 236, 480.

[36]

Veli S, Arslan A, Gülümser Ç, Topkaya E, Kurtkulak H, Zeybek Ş, Dimoglo A, İşgören M. Advanced treatment of pre-treated commercial laundry wastewater by adsorption process: Experimental design and cost evaluation. J. Ecol. Eng., 2019, 20(10): 165.

[37]

Tan D, Willatzen M, Wang ZL. Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy, 2019, 56, 512.

[38]

Xie D, Wang DH, Tang WJ, Xia XH, Zhang YJ, Wang XL, Gu CD, Tu JP. Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. J. Power Sources, 2016, 307, 510.

[39]

Salem MA, Elsharkawy RG, Hablas MF. Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies. Eur. Polym. J., 2016, 75, 577.

[40]

Fourest E, Roux JC. Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH. Appl. Microbiol. Biotechnol., 1992, 37(3): 399.

[41]

Li WP, Han XY, Wang XY, Wang YQ, Wang WX, Xu H, Tan TS, Wu WS, Zhang HX. Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite. Chem. Eng. J., 2015, 279, 735.

[42]

Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ. Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J. Hazard. Mater., 2012, 215–216, 208.

[43]

Karpovich DS, Blanchard GJ. Direct measurement of the adsorption kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface. Langmuir, 1994, 10(9): 3315.

[44]

S. Deng, C.X. Yu, J.F. Niu, J.B. Liao, and X.H. Liu, Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water, Chem. Eng. J., 392(2020), art. No. 123815.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/