Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries

Xiao-hui Ning , Chen-zheng Liao , Guo-qing Li

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1723 -1729.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1723 -1729. DOI: 10.1007/s12613-020-2150-9
Article

Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries

Author information +
History +
PDF

Abstract

The Ca–Pb electrode couple is considered to be one of the least expensive (∼36 $/(kW h)) among various optional materials for liquid–metal batteries (LMBs). The electrochemical properties of Ca–Pb alloy in a Ca∣LiCl–NaCl–CaCl2∣Pb cell were investigated in this paper. The electrode potential maintained a linear relationship in the current density range of 50–200 mA cm-2, which indicates that the alloying and dealloying processes of Ca with Pb attained rapid charge transfer and mass transport in the interface between the liquid electrode and electrolyte. The Ca–Pb electrode exhibited remarkable properties with a high discharge voltage of 0.6 V, a small self-discharge current density (<2 mA cm-2 at 600°C), and a high coulombic efficiency (>98.84%). The postmortem analysis showed that intermetallics CaPb3 and CaPb were uniformly distributed in the electrode with different molar fractions of Ca, which indicates that the nucleation of solid intermetallics did not hinder the diffusion of Ca in the electrode. This investigation on Ca–Pb electrode sheds light on the further research and the design of electrodes for Ca-based LMBs.

Keywords

liquid-metal battery / molten salt electrolyte / Ca–Pb alloys / electrochemical properties

Cite this article

Download citation ▾
Xiao-hui Ning, Chen-zheng Liao, Guo-qing Li. Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(12): 1723-1729 DOI:10.1007/s12613-020-2150-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bradwell DJ, Kim HJ, Sirk AHC, Sadoway DR. Magnesium-antimony liquid metal battery for stationary energy storage. J. Am Chem. Soc., 2012, 134(4): 1895.

[2]

Kim HJ, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Kai J, Tomaszowska AA, Wang KL, Wei WF, Ortiz LA, Barriga SA, Poize-au SM, Sadoway DR. Liquid metal batteries: Past, present, and future. Chem Rev., 2013, 113(3): 2075.

[3]

Ning XH, Phadke S, Chung B, Yin HY, Burke P, Sadoway DR. Self-healing Li-Bi liquid metal battery for grid-scale energy storage. J. Power Sources, 2015, 275, 370.

[4]

Laitinen HA, Tischer RP, Roe DK. Exchange current measurements in KCl–LiCl eutectic melt. J. Electrochem. Soc., 1960, 107(6): 546.

[5]

Pasternak AD, Olander DR. Diffusion in liquid metals. AIChE J., 1967, 13(6): 1052.

[6]

Janz GJ, Bansal NP. Molten salts data: Diffusion coefficients in single and multi-component salt systems. J. Phys. Chem. Ref. Data, 1982, 11(3): 505.

[7]

Kartal L, Timur S. Direct electrochmical reduction of copper sulfide in molten borax. Int. J. Miner. Metall. Mater., 2019, 26(8): 992.

[8]

Jiao SQ, Zhu H. Novel metallurgical process for titanium production. J. Mater. Res., 2006, 21(9): 2172.

[9]

Dai T, Yang L, Ning XH, Zhang DL, Narayan RL, Li J, Shan ZW. A low-cost intermediate temperature Fe/Graphite battery for grid-scale energy storage. Energy Storage Mater., 2020, 25, 801.

[10]

Zhao W, Li P, Liu ZW, He DL, Han K, Zhao HL, Qu XH. High-performance antimony-bismuth-tin positive electrode for liquid metal battery. Chem. Mater., 2018, 30(24): 8739.

[11]

Dai T, Zhao Y, Ning XH, Narayan RL, Li J, Shan ZW. Capacity extended bismuth-antimony cathode for highperformance liquid metal battery. J. Power Sources, 2018, 381, 38.

[12]

Wang KL, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, Bradwell DJ, Kim HJ, Muecke U, Sadoway DR. Lithium antimony-lead liquid metal battery for grid-level energy storage. Nature, 2014, 514(7522): 348.

[13]

Li HM, Wang KL, Cheng SJ, Jiang K. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode. ACS Appl. Mater. Interfaces, 2016, 8(20): 12830.

[14]

Li HM, Wang KL, Zhou H, Guo XL, Cheng SJ, Jiang K. Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications. Energy Storage Mater., 2018, 14, 267.

[15]

Poizeau S, Kim HJ, Newhouse JM, Spatocco BL, Sadoway DR. Determination and modeling of the thermodynamic properties of liquid calcium-antimony alloys. Electrochim. Acta, 2012, 76, 8.

[16]

Ouchi T, Kim HJ, Ning XH, Sadoway DR. Calciumantimony alloys as electrodes for liquid metal batteries. J. Electrochem. Soc., 2014, 161(12): A1898.

[17]

Kim HJ, Boysen DA, Bradwell DJ, Chung B, Jiang K, Tomaszowska AA, Wang KL, Wei WF, Sadoway DR. Thermodynamic properties of calcium-bismuth alloys determined by emf measurements. Electrochim. Acta, 2012, 60, 154.

[18]

Kim HJ, Boysen DA, Ouchi T, Sadoway DR. Calciumbismuth electrodes for large-scale energy storage (liquid metal batteries). J. Power Sources, 2013, 241, 239.

[19]

Sharma RA. The solubilities of calcium in liquid calcium chloride in equilibrium with calcium-copper alloys. J. Phys. Chem., 1970, 74(22): 3896.

[20]

N.D. Smith, N.E. Orabona, J.P.S. Palma, Y.R. Kong, C. Blanchard, and H.J. Kim, Thermodynamic properties of Ca-Pb electrodes determined by electromotive force measurements, J. Power Sources, 451(2020), art. No. 227745.

[21]

Idbenalia M, Servantb C, Selhaouia N, Bouirdena L. A thermodynamic reassessment of the Ca–Pb system. Calphad, 2008, 32(1): 64.

[22]

Wen CJ, Boukamp BA, Huggins RA, Weppner W. Thermodynamic and mass tra-nsport properties of “LiAl”. J. Electrochem Soc., 1979, 126(12): 2258.

[23]

Dworkin AS, Bronstein HR, Bredig MA. The electrical conductivity of solutions of metals in their molten halides. VIII. Alkaline earth metal systems. J. Phys. Chem., 1966, 70(7): 2384.

[24]

Okada M, Guidotti RA, Corbett JD. Solution of sodium alloys of some post-tra-nsition metals in molten sodium halides. Evidence for anions of bismuth and antimony. Inorg. Chem., 1968, 7(10): 2118.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/