Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering

Chun-duo Dai , Yu Fu , Jia-xiang Guo , Cui-wei Du

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1388 -1397.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1388 -1397. DOI: 10.1007/s12613-020-2149-2
Article

Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering

Author information +
History +
PDF

Abstract

The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and electrochemical tests. The FeCoCrNiMo0.3 coating was mainly composed of the face-centered cubic phase. High substrate temperature promoted the densification of the coating, and the pitting resistance and protective ability of the coating in 3.5wt% NaCl solution was thus improved. When the deposition time was prolonged at 500°C, the thickness of the coating remarkably increased. Meanwhile, the pitting resistance improved as the deposition time increased from 1 to 3 h; however, further improvement could not be obtained for the coating sputtered for 5 h. Overall, the pitting resistance of the FeCoCrNiMo0.3 coating sputtered at 500°C for 3 h exceeds those of most of the reported high-entropy alloy coatings.

Keywords

high-entropy alloy coating / magnetron sputtering / microstructure / corrosion

Cite this article

Download citation ▾
Chun-duo Dai, Yu Fu, Jia-xiang Guo, Cui-wei Du. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(10): 1388-1397 DOI:10.1007/s12613-020-2149-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren B, Lv SJ, Zhao RF, Liu ZX, Guan SK. Effect of sputtering parameters on (AlCrMnMoNiZr)N films. Surf. Eng., 2014, 30(2): 152.

[2]

Luo H, Gao SJ, Dong CF, Li XG. Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution. Electrochim. Acta, 2014, 135, 412.

[3]

Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Matykina E. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4. Corros. Sci., 2008, 50, 780.

[4]

Olsson COA, Landolt D. Passive films on stainless steels-chemistry, structure and growth. Electrochim. Acta, 2003, 48(9): 1093.

[5]

M. Lelis, S. Tuckute, S. Varnagiris, M. Urbonavicius, G. Laukaitis, and K. Bockute, Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering, Surf. Coat. Technol., 377(2019), art. No. 124906.

[6]

He Z, Zhang S, Sun D. Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering. Thin Solid Films, 2019, 676, 60.

[7]

Greczynski G, Lu J, Jensen J, Bolz S, Kölker W, Schiffers CH, Lemmer O, Greene JE, Hultman L. A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering. Surf. Coat. Technol., 2014, 257, 15.

[8]

Yang JF, Yuan ZG, Liu Q, Wang XP, Fang QF. Characterization of Mo-Al-N nanocrystalline films synthesized by reactive magnetron sputtering. Mater. Res. Bull., 2009, 44(1): 86.

[9]

Jansson U, Lewin E. Sputter deposition of transition-metal carbide films — A critical review from a chemical perspective. Thin Solid Films, 2013, 536, 1.

[10]

Zhang TY, Wu JS, Jin L, Zhang Z, Rong W, Zhang BW, Wang Y, He YD, Liu W, Li XG. Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG. J. Mater. Sci. Technol., 2019, 35(11): 2630.

[11]

Kelly PJ, Arnell RD. Magnetron sputtering: A review of recent developments and applications. Vacuum, 2000, 56(3): 159.

[12]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[13]

Zhang Y, Yang X, Liaw PK. Alloy design and properties optimization of high-entropy alloys. JOM, 2012, 64(7): 830.

[14]

Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[15]

Li DY, Li CX, Feng T, Zhang YD, Sha G, Lewandowski JJ, Liaw PK, Zhang Y. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater., 2017, 123, 285.

[16]

Gómez-Esparza CD, Peréz-Bustamante R, Alvarado-Orozco JM, Muñoz-Saldaña J, Martínez-Sánchez R, Olivares-Ramírez JM, Duarte-Moller A. Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy. Int. J. Miner. Metall. Mater., 2019, 26(5): 634.

[17]

Qin QD, Qu JB, Hu YJ, Wu Y, Su X. Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy. Int. J. Miner. Metall. Mater., 2018, 25(11): 1286.

[18]

Wei CB, Du XH, Lu YP, Jiang H, Li TJ, Wang TM. Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties. Int. J. Miner. Metall. Mater., 2020, 27(10): 1312.

[19]

Yan XH, Li JS, Zhang WR, Zhang Y. A brief review of high-entropy films. Mater. Chem. Phys., 2018, 210, 12.

[20]

Can H, Du CW, Dai CD, Zheng M, Liu ZY, Li XG. Research progress of high-entropy alloy coatings. Surf. Coat., 2019, 11, 15.

[21]

Zhang Y, Han T, Xiao M, Shen Y. Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating. Int. J. Miner. Metall. Mater., 2020, 27, 630.

[22]

Hsu WL, Murakami H, Yeh JW, Yeh AC, Shimoda K. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surf. Coat. Technol., 2017, 316, 71.

[23]

Jin G, Cai ZB, Guan YJ, Cui XF, Liu Z, Li Y, Dong ML, Zhang D. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci., 2018, 445, 113.

[24]

Hsu WL, Yang YC, Chen CY, Yeh JW. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics, 2017, 89, 105.

[25]

Hsieh MH, Tsai MH, Shen WJ, Yeh JW. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings. Surf. Coat. Technol., 2013, 221, 118.

[26]

Chang ZC. Structure and properties of duodenary (TiVCrZrNb-MoHfTaWAlSi)N coatings by reactive magnetron sputtering. Mater. Chem. Phys., 2018, 220, 98.

[27]

Lin SY, Chang SY, Huang YC, Shieu FS, Yeh JW. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surf. Coat. Technol., 2012, 206(24): 5096.

[28]

Huang PK, Yeh JW. Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scripta Mater., 2010, 62(2): 105.

[29]

Cheng CY, Yeh JW. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties. Mater. Lett., 2016, 185, 456.

[30]

Ye QF, Feng K, Li ZG, Lu FG, Li RF, Huang J, Wu YX. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surf. Sci., 2017, 396, 1420.

[31]

Li XC, Zheng ZY, Dou D, Li JC. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering. Mater. Res., 2016, 19(4): 802.

[32]

Hung SB, Wang CJ, Chen YY, Lee JW, Li CL. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings. Surf. Coat. Technol., 2019, 375, 802.

[33]

Zhao S, He LX, Fan XX, Liu CH, Long JP, Wang L, Chang H, Wang J, Zhang W. Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel. Surf. Coat. Technol., 2019, 375, 215.

[34]

Liang SC, Chang ZC, Tsai DC, Lin YC, Sung HS, Deng MJ, Shieu FS. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings. Appl. Surf. Sci., 2011, 257(17): 7709.

[35]

X.Y. Sun, X.W. Cheng, H.N. Cai, S. Ma, Z.Q. Xu, and T. Ali, Microstructure, mechanical and physical properties of FeCoNi-AlMnW high-entropy films deposited by magnetron sputtering, Appl. Surf. Sci., 507(2020), art. No. 145131.

[36]

K. von Fieandt, E.M. Paschalidou, A. Srinath, P. Soucek, L. Riekehr, L. Nyholm, and E. Lewin, Multi-component (Al,Cr,Nb,Y,Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance, Thin. Solid. Films, 693(2020), art. No. 137685.

[37]

Huang PK, Yeh JW. Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNb-SiTiV)N coatings. Thin. Solid. Films, 2009, 518(1): 180.

[38]

Liao WB, Lan S, Gao LB, Zhang HT, Xu S, Song J, Wang XL, Lu Y. Nanocrystalline high-entropy alloy (CoCrFe-NiAl0.3) thin-film coating by magnetron sputtering. Thin. Solid. Films, 2017, 638, 383.

[39]

C.Y. Wang, X.N. Li, Z.M. Li, Q. Wang, Y.H. Zheng, Y. Ma, L.X. Bi, Y.Y. Zhang, X.H. Yuan, X. Zhang, C. Dong, and P.K. Liaw, The resistivity-temperature behavior of AlxCoCrFeNi high-entropy alloy films, Thin. Solid. Films, 700(2020), art. No. 137895.

[40]

Lee JB. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique. Mater. Chem. Phys., 2006, 99(2–3): 224.

[41]

Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Matykina E. Pitting corrosion behaviour of austenitic stainless steels — Combining effects of Mn and Mo additions. Corros. Sci., 2008, 50(6): 1796.

[42]

Sugimoto K, Sawada Y. Role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions. Corrosion, 1976, 32, 2940.

[43]

Liu M, Cheng XQ, Li XG, Pan Y, Li J. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution. Appl. Surf. Sci., 2016, 389, 1182.

[44]

Liu M, Cheng XX, Li XG, Jin Z, Liu HX. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution. Constr. Build. Mater., 2015, 93, 884.

[45]

C.D. Dai, H. Luo, J. Li, C.W. Du, Z.Y. Liu, and J.Z. Yao, X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid, Appl. Surf. Sci., 499(2020), art. No. 143903.

[46]

Shang XL, Wang ZJ, Wu QF, Wang JC, Li JJ, Yu JK. Effect of Mo addition on corrosion behavior of high-entropy alloys CoCrFeNiMox in aqueous environments. Acta Metall. Sin., 2019, 32(1): 41.

[47]

Shun TT, Chang LY, Shiu MH. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Mater. Charact., 2013, 81, 92.

[48]

Liu WH, Lu ZP, He JY, Luan JH, Wang ZJ, Liu B, Liu Y, Chen MW, Liu CT. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater., 2016, 116, 332.

[49]

Wu ZF, Wang XD, Cao QP, Zhao GH, Li JX, Zhang DX, Zhu JJ, Jiang JZ. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1(x=0 and 2.5) high-entropy alloy films. Alloys Compd., 2014, 609, 137.

[50]

Braeckman BR, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann AL, Depla D. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580, 71.

[51]

Song BR, Li YH, Cong ZH, Li YX, Song ZX, Chen J. Effects of deposition temperature on the nanomechanical properties of refractory high entropy TaNbHfZr films. J. Alloys Compd., 2019, 797, 1025.

[52]

Kong DC, Xu AN, Dong CF, Mao FX, Xiao KX, Li XG, Macdonald DD. Electrochemical investigation and ab initio computation of passive film properties on copper in anaerobic sulphide solutions. Corros. Sci., 2017, 116, 34.

[53]

Isakhani-Zakaria M, Allahkaram SR, Ramezani-Varzaneh HA. Evaluation of corrosion behaviour of Pb-Co3O4 electrodeposited coating using EIS method. Corros. Sci., 2019, 157, 472.

[54]

Huttunen-Saarivirta E, Yudin VE, Myagkova LA, Svetlichnyi VM. Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations. Prog. Org. Coat., 2011, 72(3): 269.

[55]

R.M. Fonseca, R.B. Soares, R.G. Carvalho, E.K. Tentardini, V.F.C. Lins, and M.M.R. Castro, Corrosion behavior of magnetron sputtered NbN and Nb1−xAlxN coatings on AISI 316L stainless steel, Surf. Coat. Technol., 378(2019), art. No. 124987.

[56]

Zhao TL, Liu ZY, Du CW, Sun MH, Li XG. Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater. Int. J. Fatigue, 2018, 110, 105.

[57]

Lukács Z. Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits. J. Electroanal. Chem., 1999, 464(1): 68.

[58]

Carnot A, Frateur I, Zanna S, Tribollet B, Dubois-Brugger I, Marcus P. Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studied by EIS and XPS. Corros. Sci., 2003, 45, 2513.

[59]

Jorcin JB, Orazem ME, Pébère N, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta, 2006, 51(8–9): 1473.

[60]

Astinchap B. Fractal and statistical characterization of Ti thin films deposited by RF-magnetron sputtering: The effects of deposition time. Optik, 2019, 178, 231.

[61]

Ahmadipour M, Ain MF, Goutham S, Ahmad ZA. Effects of deposition time on properties of CaCu3Ti4O12 thin film deposited on ITO substrate by RF magnetron sputtering at ambient temperature. Ceram. Int., 2018, 44(15): 18817.

[62]

Petrov I, Barna PB, Hultman L, Greene JE. Microstructural evolution during film growth. J. Vac. Sci. Technol. A, 2003, 21(5): S117.

[63]

Mahieu S, Ghekiere P, Depla D, De Gryse R. Biaxial alignment in sputter deposited thin films. Thin Solid Films, 2006, 515(4): 1229.

[64]

Yamamoto T, Fushimi K, Seo M, Tsuri S, Adachi T, Habazaki H. Depassivation-repassivation behavior of type-312L stainless steel in NaCl solution investigated by the micro-indentation. Corros. Sci., 2009, 51(7): 1545.

[65]

Kim YJ, Kim SW, Kim HB, Park CN, Choi YI, Park CJ. Effects of the precipitation of secondary phases on the erosion-corrosion of 25% Cr duplex stainless steel. Corros. Sci., 2019, 152, 202.

[66]

Zhang W, Wang M, Wang L, Liu CH, Chang H, Yang JJ, Liao JL, Yang YY, Liu N. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation. Appl. Surf. Sci., 2019, 485, 108.

[67]

Liu J, Liu H, Chen PJ, Hao JB. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding. Surf. Coat. Technol., 2019, 361, 63.

[68]

Shang CY, Axinte EG, Sun J, Li XT, Li P, Du JW, Qiao PC, Wang Y. CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des., 2017, 117, 193.

[69]

Shon YK, Joshi SS, Katakam S, Shanker Rajamure R, Dahotre NB. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Mater. Lett., 2015, 142, 122.

[70]

Shi YZ, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of ALxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci., 2017, 119, 33.

[71]

Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of Fe-CoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys., 2005, 92(1): 112.

[72]

R.F. Zhao, B. Ren, B. Cai, Z.X. Liu, G.P. Zhang, and J.J. Zhang, Corrosion behavior of CoiCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution, Results Phys., 15(2019), art. No. 102667.

[73]

Chou YL, Wang YC, Yeh JW, Shih HC. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci., 2010, 52(10): 3481.

[74]

Lu P, Saal JE, Olson GB, Li T, Sahu S, Swanson OJ, Frankel GS, Gerard AY, Scully JR. Computational design and initial corrosion assessment of a series of non-equimolar high entropy alloys. Scripta Mater., 2019, 172, 12.

[75]

Z.H. Han, W.N. Ren, J. Yang, A.L. Tian, Y.Z. Du, G. Liu, R. Wei, G. Zhang, and Y.Q. Chen, The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys, J. Alloys Compd., 816(2020), art. No. 152583.

[76]

Li TS, Swanson OJ, Frankel GS, Gerard AY, Lu P, Saal JE, Scully JR. Localized corrosion behavior of a singlephase non-equimolar high entropy alloy. Electrochim. Acta, 2019, 306, 71.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/