Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering
Chun-duo Dai , Yu Fu , Jia-xiang Guo , Cui-wei Du
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (10) : 1388 -1397.
Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering
The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and electrochemical tests. The FeCoCrNiMo0.3 coating was mainly composed of the face-centered cubic phase. High substrate temperature promoted the densification of the coating, and the pitting resistance and protective ability of the coating in 3.5wt% NaCl solution was thus improved. When the deposition time was prolonged at 500°C, the thickness of the coating remarkably increased. Meanwhile, the pitting resistance improved as the deposition time increased from 1 to 3 h; however, further improvement could not be obtained for the coating sputtered for 5 h. Overall, the pitting resistance of the FeCoCrNiMo0.3 coating sputtered at 500°C for 3 h exceeds those of most of the reported high-entropy alloy coatings.
high-entropy alloy coating / magnetron sputtering / microstructure / corrosion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
M. Lelis, S. Tuckute, S. Varnagiris, M. Urbonavicius, G. Laukaitis, and K. Bockute, Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering, Surf. Coat. Technol., 377(2019), art. No. 124906. |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
X.Y. Sun, X.W. Cheng, H.N. Cai, S. Ma, Z.Q. Xu, and T. Ali, Microstructure, mechanical and physical properties of FeCoNi-AlMnW high-entropy films deposited by magnetron sputtering, Appl. Surf. Sci., 507(2020), art. No. 145131. |
| [36] |
K. von Fieandt, E.M. Paschalidou, A. Srinath, P. Soucek, L. Riekehr, L. Nyholm, and E. Lewin, Multi-component (Al,Cr,Nb,Y,Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance, Thin. Solid. Films, 693(2020), art. No. 137685. |
| [37] |
|
| [38] |
|
| [39] |
C.Y. Wang, X.N. Li, Z.M. Li, Q. Wang, Y.H. Zheng, Y. Ma, L.X. Bi, Y.Y. Zhang, X.H. Yuan, X. Zhang, C. Dong, and P.K. Liaw, The resistivity-temperature behavior of AlxCoCrFeNi high-entropy alloy films, Thin. Solid. Films, 700(2020), art. No. 137895. |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
C.D. Dai, H. Luo, J. Li, C.W. Du, Z.Y. Liu, and J.Z. Yao, X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid, Appl. Surf. Sci., 499(2020), art. No. 143903. |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
R.M. Fonseca, R.B. Soares, R.G. Carvalho, E.K. Tentardini, V.F.C. Lins, and M.M.R. Castro, Corrosion behavior of magnetron sputtered NbN and Nb1−xAlxN coatings on AISI 316L stainless steel, Surf. Coat. Technol., 378(2019), art. No. 124987. |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
R.F. Zhao, B. Ren, B. Cai, Z.X. Liu, G.P. Zhang, and J.J. Zhang, Corrosion behavior of CoiCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution, Results Phys., 15(2019), art. No. 102667. |
| [73] |
|
| [74] |
|
| [75] |
Z.H. Han, W.N. Ren, J. Yang, A.L. Tian, Y.Z. Du, G. Liu, R. Wei, G. Zhang, and Y.Q. Chen, The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys, J. Alloys Compd., 816(2020), art. No. 152583. |
| [76] |
|
/
| 〈 |
|
〉 |