Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor
Angga Hermawan , Yusuke Asakura , Shu Yin
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (11) : 1560 -1567.
Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor
Hydrogen is a promising renewable energy source for fossil-free transportation and electrical energy generation. However, leaking hydrogen in high-temperature production processes can cause an explosion, which endangers production workers and surrounding areas. To detect leaks early, we used a sensor material based on a wide bandgap aluminum nitride (AlN) that can withstand a high-temperature environment. Three unique AlN morphologies (rod-like, nest-like, and hexagonal plate-like) were synthesized by a direct nitridation method at 1400°C using γ-AlOOH as a precursor. The gas-sensing performance shows that a hexagonal plate-like morphology exhibited p-type sensing behavior and showed good repeatability as well as the highest response (S = 58.7) toward a 750 ppm leak of H2 gas at high temperature (500°C) compared with the rod-like and nest-like morphologies. Furthermore, the hexagonal plate-like morphology showed fast response and recovery times of 40 and 82 s, respectively. The surface facet of the hexagonal morphology of AlN might be energetically favorable for gas adsorption-desorption for enhanced hydrogen detection.
aluminum nitride / controllable morphology / direct nitridation / γ-AlOOH / hydrogen sensor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
F. Ren and S.J. Pearton, Recent advances in wide bandgap semiconductor-based gas sensors, [in] R. Jaaniso and O.K. Tan eds., Semiconductor Gas Sensors, 2013, p. 159. |
| [9] |
|
| [10] |
T. Singh and E. Kohn, Harsh environment materials, Ref. Module Mater. Sci. Mater. Eng. (2016). DOI: https://doi.org/10.1016/b978-0-12-803581-8.09253-5 |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
B.D. Liu, Y. Bando, A.M. Wu, X. Jiang, B. Dierre, T. Sekiguchi, C.C. Tang, M. Mitome, and D. Golberg, 352 nm ultraviolet emission from high-quality crystalline AlN whiskers, Nanotechnology, 21(2010), No. 7, art. No. 75708. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
R.Q. Wu, L. Shen, M. Yang, Z.D. Sha, Y.Q. Cai, Y.P. Feng, Z.G. Huang, and Q.Y. Wu, Possible efficient p-type doping of AlN using Be: An ab initio study, Appl. Phys. Lett., 91(2007), No. 15, art. No. 152110. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
/
| 〈 |
|
〉 |