Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system

Hong Qin , Xue-yi Guo , Qing-hua Tian , Lei Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 956 -964.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (6) : 956 -964. DOI: 10.1007/s12613-020-2142-9
Article

Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system

Author information +
History +
PDF

Abstract

The extraction of gold from refractory gold ores (RGOs) without side reactions is an extremely promising endeavor. However, most RGOs contain large amounts of sulfide, such as pyrite. Thus, investigation of the influence of sulfide on the gold leaching process is important to maximize the utilization of RGOs. In this work, the effects of pyrite on the stability of the thiourea system were systematically investigated under different conditions. Results showed that the decomposition rate of thiourea was accelerated sharply in the presence of pyrite. The effect of pyrite on gold recovery in thiourea leaching systems was then confirmed via a series of experiments. The decomposition efficiency of thiourea decreased by 40% and the recovery efficiency of gold increased by 56% after the removal of sulfide by roasting. Under optimal conditions, the efficiency of the gold recovery system increased to 83.69% and only 57.92% of thiourea decomposition was observed. The high consumption of thiourea by the leaching system may be attributed to not only adsorption by mineral particles but also catalytic decomposition by some impurities in the ores, such as pyrite and soluble ferric oxide.

Keywords

thiourea leaching / stability / pyrite / refractory gold ores

Cite this article

Download citation ▾
Hong Qin, Xue-yi Guo, Qing-hua Tian, Lei Zhang. Recovery of gold from refractory gold ores: Effect of pyrite on the stability of the thiourea leaching system. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(6): 956-964 DOI:10.1007/s12613-020-2142-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burat F, Baştürkcü H, Özer M. Gold&silver recovery from jewelry waste with combination of physical and physicochemical methods. Waste Manage., 2019, 89, 10.

[2]

Deng K, Yin P, Liu XG, Tang QH, Qu RJ. Modeling, analysis and optimization of adsorption parameters of Au(III) using low-cost agricultural residuals buckwheat hulls. J. Ind. Eng. Chem., 2014, 20(4): 2428.

[3]

Konadu KT, Huddy RJ, Harrison STL, Osseo-Asare K, Sasaki K. Sequential pretreatment of double refractory gold ore (DRGO) with a thermophilic iron oxidizing archeaon and fungal crude enzymes. Miner. Eng., 2019, 138, 86.

[4]

C. Ince, Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus, J. Cleaner Prod., 238(2019), art. No. 117871.

[5]

Alp Celep O, Paktunç D, Thibault Y. Influence of potassium hydroxide pretreatment on the extraction of gold and silver from a refractory ore. Hydrometallurgy, 2014, 146, 64.

[6]

Wang Q, Hu XZ, Zi FT, Qin XC, Nie YH, Zhang Y. Extraction of gold from refractory gold ore using bromate and ferric chloride solution. Miner. Eng., 2019, 136, 89.

[7]

Sitando O, Senanayake G, Dai X, Nikoloski AN, Breuer P. A review of factors affecting gold leaching in non-ammoniacal thiosulfate solutions including degradation and in-situ generation of thiosulfate. Hydrometallurgy, 2018, 178, 151.

[8]

Zheng S, Wang YY, Chai LY. Research status and prospect of gold leaching in alkaline thiourea solution. Miner. Eng., 2006, 19(13): 1301.

[9]

Ahtiainen R, Lundström M. Cyanide-free gold leaching in exceptionally mild chloride solutions. J. Cleaner Prod., 2019, 234, 9.

[10]

Sun CB, Zhang XL, Kou J, Xing Y. A review of gold extraction using noncyanide lixiviants: Fundamentals, advancements, and challenges toward alkaline sulfur-containing leaching agents. Int. J. Miner. Metall. Mater., 2020, 27(4): 417.

[11]

Tremblay L, Deschênes G, Ghali E, McMullen J, Lanouette M. Gold recovery from a sulphide bearing gold ore by percolation leaching with thiourea. Int. J. Miner. Prcoess., 1996, 48(3–4): 225.

[12]

Rizki IN, Tanaka Y, Okibe N. Thiourea bioleaching for gold recycling from e-waste. Waste Manage., 2019, 84, 158.

[13]

Ma CJ, Li JY, Liu RJ. A review of thiocyanate hydrometallurgy for the recovery of gold. Appl. Mech. Mater., 2015, 768, 53.

[14]

Aylmore MG, Muir DM. Thiosulfate leaching of gold—A review. Miner. Eng., 2001, 14(2): 135.

[15]

Ahtiainen R, Lundström M, Liipo J. Preg-robbing verification and prevention in gold chloride-bromide leaching. Miner. Eng., 2018, 128, 153.

[16]

Wang HX, Sun CB, Li SY, Fu PF, Song YG, Li L, Xie WQ. Study on gold concentrate leaching by iodine-iodide. Int. J. Miner. Metall. Mater., 2013, 20(4): 323.

[17]

Konyratbekova SS, Baikonurova A, Ussoltseva GA, Erust C, Akcil A. Thermodynamic and kinetic of iodine-iodide leaching in gold hydrometallurgy. Trans. Nonferrous Met. Soc. China, 2015, 25(11): 3774.

[18]

Guo YJ, Guo X, Wu HY, Li SP, Wang GH, Liu XX, Qiu GZ, Wang DZ. A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate. Hydrometallurgy, 2017, 171, 213.

[19]

Ubaldini S, Fornari P, Massidda R, Abbruzzese C. An innovative thiourea gold leaching process. Hydrometallurgy, 1998, 48(1): 113.

[20]

Tanriverdi M, Mordoğan H, İpekoğlu Ü. Leaching of Ovacik gold ore with cyanide, thiourea and thiosulphate. Miner. Eng., 2005, 18(3): 363.

[21]

Li JS, Miller JD. A review of gold leaching in acid thiourea solutions. Miner. Process. Extr. Metall. Rev., 2006, 27(3): 177.

[22]

Hiskey JB. Thiourea leaching of gold and silver — Technology update and additional applications. Min. Metall. Explor., 1984, 1(3): 173.

[23]

Hu YH, Guo GF, Qiu GZ. Study on mechanism of gold leaching by thiourea in the presence of sodium sulphite. J. Cent. South Univ. Technol., 2000, 7(3): 113.

[24]

Ardiwilaga S. Effects of cysteine and oxygen on recovery of cemented gold from leach liquors in a thiourea system. Miner. Eng., 1999, 12(6): 645.

[25]

Deng TL, Liao MX, Wang MH, Chen Y-W, Belzile N. Enhancement of gold extraction from biooxidation residues using an acidic sodium sulphite-thiourea system. Miner. Eng., 2001, 14(2): 263.

[26]

Qiu XB, Wen JK, Huang ST, Yang HY, Liu ML, Wu B. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment. Int. J. Miner. Metall. Mater., 2017, 24(10): 1104.

[27]

Fu LK, Zhang LB, Wang SX, Cui W, Peng JH. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation. Ultrason. Sonochem., 2017, 37, 471.

[28]

Guzman I, Thorpe SJ, Papangelakis VG. Redox potential measurement during pressure oxidation (POX) of a refractory gold ore. Can. Metall. Q., 2018, 57(4): 382.

[29]

Fleming CA. Basic iron sulfate — A potential killer in the processing of refractory gold concentrates by pressure oxidation. Min. Metall. Explor., 2010, 27(2): 81.

[30]

Liu ZL, Li ZL, Xie XF, Yang S, Fei JC, Li YH, Xu ZF, Liu H. Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range. Environ. Sci. Technol., 2020, 54(1): 604.

[31]

Li Q, Ji FZ, Xu B, Hu JJ, Yang YB, Jiang T. Consolidation mechanism of gold concentrates containing sulfur and carbon during oxygen-enriched air roasting. Int. J. Miner. Metall. Mater., 2017, 24(4): 386.

[32]

Yörükoglu A, Obut A, Girgin I. Effect of thiourea on sulphuric acid leaching of bastnaesite. Hydrometallurgy, 2003, 68(1–3): 195.

[33]

Celik H. Extraction of gold and silver from a Turkish gold ore through thiourea leaching. Min. Metall. Explor., 2004, 21(3): 144.

[34]

Li JS, Miller JD. Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant. Hydrometallurgy, 2007, 89(3–4): 279.

[35]

Zhou H, Song YS, Li WJ, Song K. Electrochemical behavior of gold and its associated minerals in alkaline thiourea solutions. Int. J. Miner. Metall. Mater., 2018, 25(7): 737.

[36]

Pokrovski GS, Schott J, Farges F, Hazemann J-L. Iron(III)-silica interactions in aqueous solution: Insights from X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta, 2003, 67(19): 3559.

[37]

Barnum DW. Potential-pH diagrams. J. Chem. Educ., 1982, 59(10): 809.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/