Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel
Muhammad Arslan Hafeez , Ameeq Farooq , Kaab Bin Tayyab , Muhammad Adnan Arshad
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (4) : 688 -698.
Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel
Thermomechanical cyclic quenching and tempering (TMCT) can strengthen steels through a grain size reduction mechanism. The effect of TMCT on microstructure, mechanical, and electrochemical properties of AISI 1345 steel was investigated. Steel samples heated to 1050°C, rolled, quenched to room temperature, and subjected to various cyclic quenching and tempering heat treatments were named TMCT-1, TMCT-2, and TMCT-3 samples, respectively. Microstructure analysis revealed that microstructures of all the treated samples contained packets and blocks of well-refined lath-shaped martensite and retained austenite phases with varying grain sizes (2.8–7.9 µm). Among all the tested samples, TMCT-3 sample offered an optimum combination of properties by showing an improvement of 40% in tensile strength and reduced 34% elongation compared with the non-treated sample. Nanoindentation results were in good agreement with mechanical tests as the TMCT-3 sample exhibited a 51% improvement in indentation hardness with almost identical reduced elastic modulus compared with the non-treated sample. The electrochemical properties were analyzed in 0.1 M NaHCO3 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. As a result of TMCT, the minimum corrosion rate was 0.272 mm/a, which was twenty times less than that of the non-treated sample. The impedance results showed the barrier film mechanism, which was confirmed by the polarization results as the current density decreased.
thermomechanical treatment / cyclic heat-treatment / nanoindentation / potentiodynamic polarization / electrochemical impedance spectroscopy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
M.A. Hafeez, A. Inam, and A. Farooq, Mechanical and corrosion properties of medium carbon low alloy steel after cyclic quenching and tempering heat-treatments, Mater. Res. Express, 7(2020), No. 1, art. No. 016553. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Z.X. Cao, Z.Y. Shi, F. Yu, K. Sugimoto, W.Q. Cao, and Y.Q. Weng, Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity, Int. J. Fatigue, 128(2019), art. No. 105176. |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
A. Farooq, A.A. Alvi, A.M.H. Alvi, K.M. Deen, and A. Tariq, Effect of post weld heat treatment on the electrochemical behavior of API X-65 welded pipeline in bicarbonates solutions, [in] Conference Proceeding: NACE Northern Area Western Conference, Calgary, Alberta, 2019, p. 683. |
| [38] |
A. Inam, Y. Imtiaz, M.A. Hafeez, S. Munir, Z. Ali, M. Ishtiaq, M.H. Hassan, A. Maqbool, and W. Haider, Effect of tempering time on microstructure, mechanical, and electrochemical properties of quenched-partitioned-tempered advanced high strength steel (AHSS), Mater. Res. Express, 6(2019), art. No. 126509. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
M.A. Hafeez and A. Farooq, Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures, Mater. Res. Express, 5(2018), No. 1, art. No. 016505. |
| [45] |
M.A. Hafeez, Effect of microstructural transformation during tempering on mechanical properties of quenched and tempered 38CrSi steel, Mater. Res. Express, 6(2019), No. 8, art. No. 086552. |
| [46] |
M.A. Hafeez, A. Inam, and M.A. Arshad, Investigation on microstructural, mechanical, and electrochemical properties of water, brine quenched and tempered low carbon steel, Mater. Res. Express, 6(2019), No. 9, art. No. 096524. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
/
| 〈 |
|
〉 |