Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance

Rui-qi Yang , Na Liang , Xuan-yu Chen , Long-wei Wang , Guo-xin Song , Yan-chen Ji , Na Ren , Ya-wei Lü , Jian Zhang , Xin Yu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 150 -159.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (1) : 150 -159. DOI: 10.1007/s12613-020-2131-z
Article

Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance

Author information +
History +
PDF

Abstract

Sn3O4, a common two-dimensional semiconductor photocatalyst, can absorb visible light. However, owing to its rapid recombination of photogenerated electron-hole pairs, its absorption is not sufficient for practical application. In this work, a Sn nanoparticle/Sn3O4−x nanosheet heterostructure was prepared by in situ reduction of Sn3O4 under a H2 atmosphere. The Schottky junctions formed between Sn and Sn3O4−x can enhance the photogenerated carrier separation ability. During the hydrogenation process, a portion of the oxygen in the semiconductor can be extracted by hydrogen to form water, resulting in an increase in oxygen vacancies in the semiconductor. The heterostructure showed the ability to remove Rhodamine B. Cell cytocompatibility experiments proved that Sn/Sn3O4−x can significantly enhance cell compatibility and reduce harm to organisms. This work provides a new method for the fabrication of a Schottky junction composite photocatalyst rich in oxygen vacancies with enhanced photocatalytic performance.

Keywords

photocatalysis / tin oxide / oxygen vacancy / Schottky junction / photodegradation

Cite this article

Download citation ▾
Rui-qi Yang, Na Liang, Xuan-yu Chen, Long-wei Wang, Guo-xin Song, Yan-chen Ji, Na Ren, Ya-wei Lü, Jian Zhang, Xin Yu. Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(1): 150-159 DOI:10.1007/s12613-020-2131-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J., 2017, 323, 361.

[2]

Rajbongshi H, Kalita D. Morphology-dependent photocatalytic degradation of organic pollutant and antibacterial activity with CdS nanostructures. J. Nanosci. Nanotechnol., 2020, 20(9): 5885.

[3]

Liu XQ, Iocozzia J, Wang Y, Cui X, Chen YH, Zhao SQ, Li Z, Lin ZQ. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci., 2017, 10(2): 402.

[4]

Nat. Ecol. Evol., 2017, 1(5)

[5]

Lofrano G, Meriç S, Zengin GE, Orhon D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci. Total Environ., 2013, 461–462, 265.

[6]

Cano PI, Colón J, Ramírez M, Lafuente J, Gabriel D, Cantero D. Life cycle assessment of different physical-chemical and biological technologies for biogas desulfurization in sewage treatment plants. J. Cleaner Prod., 2018, 181, 663.

[7]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37.

[8]

Wang HH, Liu WX, Ma J, Liang Q, Qin W, Lartey PO, Feng XJ. Design of (GO/TiO2)N one-dimensional photonic crystal photocatalytic photocatalysts with improved photocatalytic activities for tetracycline degradation. Int. J. Miner. Metall. Mater., 2020, 27(6): 830.

[9]

Zhang YC, Zhang Q, Dong ZY, Wu LY, Hong JM. Degradation of acetaminophen with ferrous/copperoxide activate persulfate: Synergism of iron and copper. Water Res., 2018, 146, 232.

[10]

P. Wang, S. Guo, H.J. Wang, K.K. Chen, N. Zhang, Z.M. Zhang, and T.B. Lu, A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution, Nat. Commun., 10(2019), art. No. 3155.

[11]

Liu HX, Teng MY, Wei XG, Li TD, Jiang ZY, Niu QF, Wang XP. Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance. Int. J. Miner. Metall. Mater., 2020

[12]

Sansotera M, Kheyli SGM, Baggioli A, Bianchi CL, Pedeferri MP, Diamanti MV, Navarrini W. Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification. Chem. Eng. J., 2019, 361, 885.

[13]

Yu X, Wang S, Zhang XD, Qi AH, Qiao XR, Liu ZR, Wu MQ, Li LL, Wang ZL. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 2018, 46, 29.

[14]

Adv. Mater., 2019, 31(33)

[15]

Song GX, Wang LW, Yang RQ, Ji YC, Zhang RT, Yang L, Ding LH, Wang AZ, Ren N, Yu X. Enhanced antibacterial photocatalytic activity of porous few-layer C3N4. J. Nanosci. Nanotechnol., 2020, 20(9): 5944.

[16]

Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 2014, 43(22): 7520.

[17]

Yue ZK, Liu AJ, Zhang CY, Huang J, Zhu MS, Du YK, Yang P. Noble-metal-free hetero-structural CdS/Nb2O5/N-doped-graphene ternary photocatalytic system as visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal. B, 2017, 201, 202.

[18]

Yu X, Zhao ZH, Sun DH, Ren N, Ding LH, Yang RQ, Ji YC, Li LL, Liu H. TiO2/TiN core/shell nanobelts for efficient solar hydrogen generation. Chem. Commun., 2018, 54(47): 6056.

[19]

Yu X, Zhao ZH, Ren N, Liu J, Sun DH, Ding LH, Liu H. Top or bottom, assembling modules determine the photocatlytic property of the sheetlike nanostructured hybrid photocatalyst composed with Sn3O4 and rGO (GQD). ACS Sustainable Chem. Eng., 2018, 6(9): 11775.

[20]

Adv. Mater., 2018, 30(27)

[21]

Cheng X, Zhang YJ, Bi YP. Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays. Nano Energy, 2019, 57, 542.

[22]

Adv. Funct. Mater., 2019, 29(41)

[23]

L.M. Sun, R. Li, W.W. Zhan, Y.S. Yuan, X.J. Wang, X.G. Han, and Y.L. Zhao, Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts, Nat. Commun., 10(2019), art. No. 2270.

[24]

Wang YJ, Wang QS, Zhan XY, Wang FM, Safdar M, He J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale, 2013, 5(18): 8326.

[25]

Liu ZR, Yu X, Li LL. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field. Chin. J. Catal., 2020, 41(4): 534.

[26]

Esmaili H, Kotobi A, Sheibani S, Rashchi F. Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light. Int. J. Miner. Metall. Mater., 2018, 25(2): 244.

[27]

Ding CM, Shi JY, Wang ZL, Li C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal., 2017, 7(1): 675.

[28]

Li XF, Meng XB, Liu J, Geng DS, Zhang Y, Banis MN, Li YL, Yang JL, Li RY, Sun XL, Cai M, Verbrugge MW. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater., 2012, 22(8): 1647.

[29]

Adv. Energy Mater., 2017, 7(17)

[30]

Yu X, Zhao ZH, Zhang J, Guo WB, Li LL, Liu H, Wang ZL. One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis. CrystEngComm, 2017, 19(1): 129.

[31]

Yu X, Wang LF, Zhang J, Guo WB, Zhao ZH, Qin Y, Mou XN, Li AX, Liu H. Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance. J. Mater. Chem. A, 2015, 3(37): 19129.

[32]

R.Q. Yang, Y.C. Ji, Q. Li, Z.H. Zhao, R.T. Zhang, L.L. Liang, F. Liu, Y.K. Chen, S.W. Han, X. Yu, and H. Liu, Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance, Appl. Catal. B, 256(2019), art. No. 117798.

[33]

Balgude SD, Sethi YA, Kale BB, Munirathnam NR, Amalnerkar DP, Adhyapak PV. Nanostructured layered Sn3O4 for hydrogen production and dye degradation under sunlight. RSC Adv., 2016, 6(98): 95663.

[34]

Li CM, Yu SY, Dong HJ, Liu CB, Wu HJ, Che HN, Chen G. Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight. Appl. Catal. B, 2018, 238, 284.

[35]

Zhu LP, Lu H, Hao D, Wang LL, Wu ZH, Wang LJ, Li P, Ye JH. Three-dimensional lupinus-like TiO2 nanorod@ Sn3O4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance. ACS Appl. Mater. Interfaces, 2017, 9(44): 38537.

[36]

Yang RQ, Ji YC, Zhang J, Zhang RT, Liu F, Chen YK, Liang LL, Han SW, Yu X, Liu H. Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/Ni foam heterostructure photoelectrocatalyst. Catal. Today, 2019, 335, 520.

[37]

Zhang BB, Wang L, Zhang YJ, Ding Y, Bi YP. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed., 2018, 57(8): 2248.

[38]

Adv. Mater., 2019, 31(16)

[39]

Wang YW, Liu F, Williams GR, Zhang DB, Kong XG, Lei XD. Enhancing photocatalytic activity of Nb2O5−x for aerobic oxidation through synergy of oxygen vacancy and porosity. J. Nanosci. Nanotechnol., 2020, 20(4): 2495.

[40]

Liang MF, Borjigin T, Zhang YH, Liu BH, Liu H, Guo H. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B, 2019, 243, 566.

[41]

Bao J, Zhang XD, Fan B, Zhang JJ, Zhou M, Yang WL, Hu X, Wang H, Pan BC, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed., 2015, 54(25): 7399.

[42]

Yuan CZ, Li JY, Hou LR, Zhang XG, Shen LF, Lou XW. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater., 2012, 22(21): 4592.

[43]

She HD, Zhou H, Li LS, Wang L, Huang JW, Wang QZ. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol. ACS Sustainable Chem. Eng., 2018, 6(9): 11939.

[44]

Chen GH, Ji SZ, Sang YH, Chang SJ, Wang YN, Hao P, Claverie J, Liu H, Yu GW. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV.visible light photocatalytic activity. Nanoscale, 2015, 7(7): 3117.

[45]

Yu X, Zhao ZH, Sun DH, Ren N, Yu JH, Yang RQ, Liu H. Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for effcient photocatalytic hydrogen generation. Appl. Catal. B, 2018, 227, 470.

[46]

Nam DH, Kim RH, Han DW, Kwon HS. Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochim. Acta, 2012, 66, 126.

[47]

He YH, Li DZ, Chen J, Shao Y, Xian JJ, Zheng XZ, Wang P. Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv., 2014, 4(3): 1266.

[48]

Adv. Funct. Mater., 2019, 29(28)

[49]

Yu X, Zhao ZH, Zhang J, Guo WB, Qiu JC, Li DS, Li Z, Mou XN, Li LL, Li AX, Liu H. Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-powered, wireless UV photodetector. Small, 2016, 12(20): 2759.

[50]

Xia WW, Wang HB, Zeng XH, Han J, Zhu J, Zhou M, Wu SD. High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer. CrystEngComm, 2014, 16(30): 6841.

[51]

Pawar RC, Khare V, Lee CS. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans., 2014, 43(33): 12514.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/