Mine tailings as a raw material in alkali activation: A review

Jenni Kiventerä , Priyadharshini Perumal , Juho Yliniemi , Mirja Illikainen

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (8) : 1009 -1020.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (8) : 1009 -1020. DOI: 10.1007/s12613-020-2129-6
Invited Review

Mine tailings as a raw material in alkali activation: A review

Author information +
History +
PDF

Abstract

The mining industry produces billions of tons of mine tailings annually. However, because of their lack of economic value, most of the tailings are discarded near the mining sites, typically under water. The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content. Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water. The management of tailing dams requires expensive construction and careful control, and there is the need for stable, sustainable, and economically viable management technologies. Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings. Alkali activated materials are hardened, concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon, which fortunately, are the main elements in mining residues. Furthermore, alkali activation can immobilize harmful heavy metals within the structure. This review describes the research on alkali activated mine tailings. The reactivity and chemistry of different minerals are discussed. Since many mine tailings are poorly reactive under alkaline conditions, different pretreatment methods and their effects on the mineralogy are reviewed. Possible applications for these materials are also discussed.

Keywords

mine tailings / alkali activation / thermal treatment / mechanical activation / alkaline fusion / heavy metal immobilization

Cite this article

Download citation ▾
Jenni Kiventerä, Priyadharshini Perumal, Juho Yliniemi, Mirja Illikainen. Mine tailings as a raw material in alkali activation: A review. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(8): 1009-1020 DOI:10.1007/s12613-020-2129-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asad MWA, Qureshi MA, Jang H. A review of cut-off grade policy models for open pit mining operations. Resour. Policy, 2016, 49, 142.

[2]

Jamieson HE, Walker SR, Parsons MB. Mineralogical characterization of mine waste. Appl. Geochem., 2015, 57, 85.

[3]

Adiansyah JS, Rosano M, Vink S, Keir G. A framework for a sustainable approach to mine tailings management: Disposal strategies. J. Cleaner Prod., 2015, 108, 1050.

[4]

Lottermoser BG. Mine Wastes: Characterization, Treatment and Environmental Impacts, 2010, 3rd ed., New York, Springer-Verlag Berlin Heidelberg

[5]

Park I, Tabelin CB, Jeon S, Li XL, Seno K, Ito M, Hiroyoshi N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 2019, 219, 588.

[6]

Benzaazoua M, Belem T, Bussière B. Chemical factors that influence the performance of mine sulphidic paste backfill. Cem. Concr. Res., 2002, 32(7): 1133.

[7]

Ercikdi B, Cihangir F, Kesimal A, Deveci H, Alp İ. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. J. Hazard. Mater., 2009, 168(2–3): 848.

[8]

Benzaazoua M, Ouellet J, Servant S, Newman P, Verburg R. Cementitious backfill with high sulfur content physical, chemical, and mineralogical characterization. Cem. Concr. Res., 1999, 29(5): 719.

[9]

Rao F, Liu Q. Geopolymerization and its potential application in mine tailings consolidation: A review. Miner. Process. Extr. Metall. Rev., 2015, 36(6): 399.

[10]

Ahmari S, Zhang LY. Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr. Build. Mater., 2013, 44, 743.

[11]

Komnitsas K, Zaharaki D. Geopolymerisation: A review and prospects for the minerals industry. Miner. Eng., 2007, 20(14): 1261.

[12]

Walker SR, Jamieson HE, Lanzirotti A, Andrade CF, Hall GEM. The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale. Can. Mineral., 2005, 43(4): 1205.

[13]

Kinnunen P, Ismailov A, Solismaa S, Sreenivasan H, Räisänen M-L, Levänen E, Illikainen M. Recycling mine tailings in chemically bonded ceramics - A review. J. Cleaner Prod., 2018, 174, 634.

[14]

Singer PC, Stumm W. Acidic mine drainage: The rate-determining step. Science, 1970, 167(3921): 1121.

[15]

Provis JL, van Deventer JSJ. Alkali Activated Materials: State-Of-The-Art Report, RILEM TC 224-AAM. RILEM State-of-the-Art Reports, 2014, New York, Springer Netherlands Vol. 13

[16]

Lancellotti I, Barbieri L, Leonelli C. Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P. Use of alkali-activated concrete binders for toxic waste immobilization. Handbook of Alkali-Activated Cements, Mortars and Concretes, 2015, Cambridge, Woodhead Publishing, 539.

[17]

Provis JL. Provis JL, van Deventer JSJ. Immobilisation of toxic wastes in geopolymers. Geopolymers: Structures, Processing, Properties and Industrial Applications, 2009, Cambridge, Woodhead Publishing, 421.

[18]

Provis JL. Provis JL, van Deventer JSJ. Activating solution chemistry for geopolymers. Geopolymers: Structures, Processing, Properties and Industrial Applications, 2009, Cambridge, Woodhead Publishing, 50.

[19]

Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L. The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Miner. Eng, 1997, 10(7): 659.

[20]

Deja J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res, 2002, 32(12): 1971.

[21]

Sreenivasan H, Kinnunen P, Heikkinen E-P, Illikainen M. Thermally treated phlogopite as magnesium-rich precursor for alkali activation purpose. Miner. Eng., 2017, 113, 47.

[22]

Zhang LY, Ahmari S, Zhang JH. Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Constr. Build. Mater., 2011, 25(9): 3773.

[23]

Son SG, Kim YD, Lee WK, Kim KN. Properties of the alumino-silicate geopolymer using mine tailing and granulated slag. J. Ceram. Process. Res., 2013, 14(5): 591.

[24]

Kiventerä J, Golek L, Yliniemi J, Ferreira V, Deja J, Illikainen M. Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization. Int. J. Miner. Process., 2016, 149, 104.

[25]

Kalinkina EV, Gurevich BI, Kalinkin AM. Alkali-activated binder based on milled antigorite. Minerals, 2018, 8(11): 503.

[26]

P. Perumal, K. Piekkari, H. Sreenivasan, P. Kinnunen, and M. Illikainen, One-part geopolymers from mining residues - Effect of thermal treatment on three different tailings, Miner. Eng., 144(2019), art. No. 106026.

[27]

H. Niu, P. Kinnunen, H. Sreenivasan, E. Adesanya, and M. Illikainen, Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential, Miner. Eng., 151(2020), art. No. 106331.

[28]

Lemougna PN, Yliniemi J, Ismailov A, Levanen E, Tanskanen P, Kinnunen P, Roning J, Illikainen M. Recycling lithium mine tailings in the production of low temperature (700-900°C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties. Constr. Build. Mater., 2019, 221, 332.

[29]

J. Davidovits, Waste Solidification and Disposal Method, US Patent, Appl. 4859367, 1989.

[30]

J.G.S. van Jaarsveld, G.C. Lukey, J.S.J. van Deventer, and A. Graham, The stabilisation of mine tailings by reactive geopolymerisation, [in] International Congress on Mineral Processing and Extractive Metallurgy, Melbourne, 2000, p. 363.

[31]

Ahmari S, Zhang LY. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr. Build. Mater., 2012, 29, 323.

[32]

Ahmari S, Zhang LY. Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Constr. Build. Mater., 2013, 40, 1002.

[33]

J. Mater. Civ. Eng., 2018, 30(9) art. No. 04018201

[34]

Wan Q, Rao F, Song SX, Leon-Patino CA, Ma YQ, Yin WZ. Consolidation of mine tailings through geopolymerization at ambient temperature. J. Am. Ceram. Soc, 2019, 102(5): 2451.

[35]

Wang A, Liu HZ, Hao XF, Wang Y, Liu XQ, Li Z. Geopolymer synthesis using garnet tailings from molybdenum mines. Minerals., 2019, 9(1): 48.

[36]

Kiventerä J, Lancellotti I, Catauro M, Poggetto FD, Leonelli C, Illikainen M. Alkali activation as new option for gold mine tailings inertization. J. Cleaner Prod., 2018, 187, 76.

[37]

Jiang HQ, Qi ZJ, Yilmaz E, Han J, Qiu JP, Dong CL. Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills. Constr. Build. Mater., 2019, 218, 689.

[38]

Cihangir F, Ercikdi B, Kesimal A, Turan A, Deveci H. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Miner. Eng., 2012, 30, 33.

[39]

Capasso I, Lirer S, Flora A, Ferone C, Cioffi R, Caputo D, Liguori B. Reuse of mining waste as aggregates in fly ashbased geopolymers. J. Cleaner Prod., 2019, 220, 65.

[40]

Falah M, Obenaus-Emler R, Kinnunen P, Illikainen M. Effects of activator properties and curing conditions on alkaliactivation of low-alumina mine tailings. Waste Biomass Valorizatio, 2020, 11(9): 5027.

[41]

Jiao XK, Zhang YM, Chen TJ. Thermal stability of a silica-rich vanadium tailing based geopolymer. Constr. Build. Mater., 2013, 38, 43.

[42]

Yu L, Zhang Z, Huang X, Jiao BQ, Li DW. Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system. Fibers, 2017, 5(4): 47.

[43]

E. Adesanya, K. Ohenoja, J. Yliniemi, and M. Illikainen, Mechanical transformation of phyllite mineralogy toward its use as alkali-activated binder precursor, Miner. Eng., 145(2020), art. No. 106093.

[44]

Ferone C, Liguori B, Capasso I, Colangelo F, Cioffi R, Cappelletto E, Di Maggio R. Thermally treated clay sediments as geopolymer source material. Appl. Clay Sci., 2015, 107, 195.

[45]

Bondar D, Lynsdale CJ, Milestone NB, Hassani N, Ramezanianpour AA. Effect of heat treatment on reactivitystrength of alkali-activated natural pozzolans. Constr. Build. Mater., 2011, 25(10): 4065.

[46]

Xu H, Van Deventer JSJ. Geopolymerisation of multiple minerals. Miner. Eng., 2002, 15(12): 1131.

[47]

Pacheco-Torgal F, Castro-Gomes J, Jalali S. Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders. Cem. Concr. Res., 2007, 37(6): 933.

[48]

Pacheco-Torgal F, Castro-Gomes JP, Jalali S. Investigations on mix design of tungsten mine waste geopolymeric binder. Constr. Build. Mater., 2008, 22(9): 1939.

[49]

Pacheco-Torgal F, Castro-Gomes J, Jalali S. Durability and environmental performance of alkali-activated tungsten mine waste mud mortars. J. Mater. Civ. Eng, 2010, 22(9): 897.

[50]

Kiventerä J, Sreenivasan H, Cheeseman C, Kinnunen P, Illikainen M. Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime. J. Environ. Chem. Eng., 2018, 6(5): 6530.

[51]

Aydın S, Kızıltepe C. Valorization of boron mine tailings in alkali-activated mortars. J. Mater. Civ. Eng, 2019, 31(10): 04019224.

[52]

Feng DW, Provis JL, van Deventer JSJ. Thermal activation of albite for the synthesis of one-part mix geopolymers. J. Am. Ceram. Soc., 2012, 95(2): 565.

[53]

Moukannaa S, Loutou M, Benzaazoua M, Vitola L, Alami J, Hakkou R. Recycling of phosphate mine tailings for the production of geopolymers. J. Cleaner Prod., 2018, 185, 891.

[54]

Naghsh M, Shams K. Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening. Appl. Clay Sci., 2017, 146, 238.

[55]

Tchakoute Kouamo H, Mbey JA, Elimbi A, Kenne Diffo BB, Njopwouo D. Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash. Ceram. Int., 2013, 39(2): 1613.

[56]

Tchadjié LN, Djobo JNY, Ranjbar N, Tchakouté HK, Kenne BBD, Elimbi A, Njopwouo D. Potential of using granite waste as raw material for geopolymer synthesis. Ceram. Int., 2016, 42(2): 3046.

[57]

F. Demir and E.M. Derun, Modelling and optimization of gold mine tailings based geopolymer by using response surface method and its application in Pb2+ removal, J. Cleaner Prod., 237(2019), art. No. 117766.

[58]

Moukannaa S, Nazari A, Bagheri A, Loutou M, Sanjayan JG, Hakkou R. Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties. J. Non-Cryst. Solids, 2019, 511, 76.

[59]

Van Jaarsveld JGS, Van Deventer JSJ, Schwartzman A. The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Miner. Eng., 1999, 12(1): 75.

[60]

Wan Q, Rao F, Song SX, Morales-Estrella R, Xie X, Tong X. Chemical forms of lead immobilization in alkali-activated binders based on mine tailings. Cem. Concr. Compos., 2018, 92, 198.

[61]

I.P. Giannopoulou and D. Panias, Development of geopolymeric materials from industrial solid wastes, [in] 2nd International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, Hania, Greece, 2006, p. 69.

[62]

Vandecasteele C, Dutré V, Geysen D, Wauters G. Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manage., 2002, 22(2): 143.

[63]

Chrysochoou M, Dermatas D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. J. Hazard. Mater., 2006, 136(1): 20.

[64]

J. Kiventerä, K. Piekkari, V. Isteri, K. Ohenoja, P. Tanskanen, and M. Illikainen, Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement, J. Cleaner Prod.}, 239(2019), art. No. 118008.

[65]

Nguyen H, Adesanya E, Ohenoja K, Kriskova L, Pontikes Y, Kinnunen P, Illikainen M. Byproduct-based ettringite binder - A synergy between ladle slag and gypsum. Constr. Build. Mater., 2019, 197, 143.

[66]

Sarkkinen M, Kujala K, Gehör S. Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings. J. Sustainable Min., 2019, 18(3): 115.

[67]

Rico M, Benito G, Díez-Herrero A. Floods from tailings dam failures. J. Hazard. Mater., 2008, 154(1–3): 79.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/