Synthesis and characterization of ceria nanoparticles by complex-precipitation route

Yanping Li , Xue Bian , Yang Liu , Wenyuan Wu , Gaofeng Fu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 292 -297.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 292 -297. DOI: 10.1007/s12613-020-2126-9
Article

Synthesis and characterization of ceria nanoparticles by complex-precipitation route

Author information +
History +
PDF

Abstract

Ceria (CeO2) nanoparticles were successfully synthesized via a simple complex-precipitation route that employs cerium chloride as cerium source and citric acid as precipitant. The elemental analysis results of carbon, hydrogen, oxygen, and cerium in the precursors were calculated, and the results revealed that the precursors were composed of Ce(OH)3, Ce(H2Cit)3, or CeCit. X-ray diffraction analysis showed that all ceria nanoparticles had a face-centered cubic structure. With the molar ratio of citric acid to Ce3+ (n) of 0.25 and pH of 5.5, the specific surface area of the sample reached the maximum value of 83.17 m2/g. Ceria nanoparticles were observed by scanning electron microscopy. Selected area electron diffraction patterns of several samples were obtained by transmission electron microscopy, and the crystal plane spacing of each low-exponent crystal plane was calculated. The ultraviolet (UV)—visible transmittance curve showed that ceria can absorb UV light and pass through visible light. Among all samples, the minimum average transmittance of ultraviolet radiation a (UVA) was 4.42%, and that of ultraviolet radiation b (UVB) was 1.56%.

Keywords

ceria nanoparticle / complex-precipitation / crystal plane spacing / ultraviolet light

Cite this article

Download citation ▾
Yanping Li, Xue Bian, Yang Liu, Wenyuan Wu, Gaofeng Fu. Synthesis and characterization of ceria nanoparticles by complex-precipitation route. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(2): 292-297 DOI:10.1007/s12613-020-2126-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Henriksen T, Dahlback A, Larsen SHH, Moan J. Ultraviolet-radiation and skin cancer. effect of an ozone layer depletion. Photochem. Photobiol., 1990, 51(5): 579.

[2]

Antoniou C, Kosmadaki MG, Stratigos AJ, Katsambas AD. Sunscreens — what’s important to know. J. Eur. Acad. Dermatol. Venereol., 2008, 22(9): 1110.

[3]

Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AY, Spivak NY, Tretyakov YD. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photoch. Photobiol. B, 2011, 102(1): 32.

[4]

Masui T, Yamamoto M, Sakata T, Morib H, Adachi GY. Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. J. Mater. Chem., 2000, 10(2): 353.

[5]

Sun CW, Li H, Zhang HR, Wang ZX, Chen LQ. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology, 2005, 16(9): 1454.

[6]

Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, 10, 1056.

[7]

Pirmohamed T, Dowding JM, Singh S, Wasserman B, Karakoti E, Heckert AS, King JES, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 2010, 46(16): 2736.

[8]

Shcherbakov AB, Zholobak NM, Ivanov VK, Ivanova O, Marchevsky A, Baranchikov A, Spivak N, Tretyakov Y. Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria. Russ. J. Inorg. Chem., 2012, 57(11): 1411.

[9]

Rodriguez JA, Hanson JC, Kim JY, Liu G, Iglesias-Juez A, Fernandez-García MJ. Properties of CeO2 and Ce1−xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional, and time-resolved X-ray diffraction studies. Phys. Chem. B, 2003, 107(15): 3535.

[10]

Zhou XD, Huebner W, Anderson HU. Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2. Appl. Phys. Lett., 2002, 80(20): 3814.

[11]

Matijevi E, Hsu WP. Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III). J. Colloid Interface Sci., 1987, 118(2): 506.

[12]

Chen PL, Chen IW. Reactive cerium(IV) oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc., 1993, 76(6): 1577.

[13]

Vermal A, Karar N, Bakhshi AK, Chander H, Shivaprasad SM, Agnihotry SA. Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2films deposited using citric acid. J. Nanoparticle Res., 2007, 9(2): 317.

[14]

Chu X, Chung WI, Schmidt LD. Sintering of sol-gel-prepared submicrometer particles studied by transmission electron microscopy. J. Am. Ceram. Soc., 1993, 76(8): 2115.

[15]

Yin LX, Wang YQ, Pang GS, Koltypin Y, Gedanken A. Sonochemical synthesis of cerium oxide nanoparticles—Effect of additives and quantum size effect. J. Colloid Interface Sci., 2002, 246(1): 78.

[16]

Zhang DS, Fu HX, Shi LY, Pan CS, Li Q, Chu YL, Yu WJ. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg. Chem., 2007, 46(7): 2446.

[17]

Zhou YC, Phillips RJ, Switzer JA. Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders. J. Am. Ceram. Soc., 1995, 78(4): 981.

[18]

Yang ZJ, Yang YZ, Liang H, Liu L. Hydrothermal synthesis of monodisperse CeO2 nanocubes. Mater. Lett., 2009, 63(21): 1774.

[19]

Yu RB, Yan L, Zheng P, Chen J, Xing XR. Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route. J. Phys. Chem. C, 2008, 112(50): 19896.

[20]

Abbas F, Iqbal J, Jan T, Badshah N, Mansoor Q, Ismail M. Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures. Int. J. Miner. Metall. Mater., 2016, 23(1): 102.

[21]

Wu MZ, Liu YM, Dai P, Sun ZQ, Liu XS. Hydrothermal synthesis and photoluminescence behavior of CeO2 nanowires with the aid of surfactant PVP. Int. J. Miner. Metall. Mater., 2010, 17(4): 470.

[22]

Wang J, Zeng W, Wang ZC. Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties. Ceram. Int., 2016, 42(3): 4567.

[23]

Chen Y, Liu TM, Chen CL, Guo WW, Sun R, Lv SH, Saito M, Tsukimoto S, Wang ZC. Synthesis and characterization of CeO2 nano-rods. Ceram. Int., 2013, 39(6): 6607.

[24]

Chen Y, Lv SS, Chen C. Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes. J. Phys. Chem. C, 2014, 118(8): 4437.

[25]

Zhang ML, Chen Y, Qiu CJ, Fan XF, Chen CL, Wang ZC. Synthesis and atomic-scale characterization of CeO2 nano-octahedrons. Phys. E, 2014, 64, 218.

[26]

Chen Y, Liu TM, Chen CL, Guo WW, Sun R, Lv SH, Saito M, Tsukimoto S, Wang ZC. Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons. Mater. Lett., 2013, 96, 210.

[27]

Chen Y, Qiu CJ, Chen CL, Fan XF, Xu SB, Guo WW, Wang ZC. Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors. Mater. Lett., 2014, 122, 90.

[28]

Hu PF, Chen Y, Sun R, Chen Y, Yin YR, Wang ZC. Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes. Appl. Surf. Sci., 2017, 401, 100.

[29]

Masui T, Fujiwara K, Machida KI, Adachi GY, Sakata T, Mori H. Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles. Chem. Mater., 1997, 9(10): 2197.

[30]

Yang HM, Huang CH, Tang AD, Zhang XC, Yang WG. Microwave-assisted synthesis of ceria nanoparticles. Mater. Res. Bull., 2005, 40(10): 1690.

[31]

Yokota O, Yashima M, Kakihana M, Shimofuku A, Yoshimura M. Synthesis of metastable tetragonal (t′) ZrO2-12 mol% YO1.5 by the organic polymerized complex method. J. Am. Ceram. Soc., 2004, 82(5): 1333.

[32]

Zhou XM. Preparation of superfine cerium oxide by salt precipitation of citrate. Chin. J. Rare Earth Sci., 2002, 20, 67 Suppl.

[33]

Yin SH, Wu WY, Li SW, Bian X, Peng JH, Zhang LB. Ultraviolet and infrared spectral properties of rare earth-lactic acid complex. Chin. Rare Earth, 2015, 36(3): 122.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/