Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review

Jin-hua Zhou , Yong-feng Shen , Nan Jia

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 335 -348.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (3) : 335 -348. DOI: 10.1007/s12613-020-2121-1
Invited Review

Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review

Author information +
History +
PDF

Abstract

This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic (RAFM) steels. High-angle grain boundaries, subgrain boundaries, nano-sized M23C6, and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength. M23C6 carbides are easily coarsened under high temperatures, thereby weakening their ability to block dislocations. Creep properties are improved through the reduction of M23C6 carbides. Thus, the loss of strength must be compensated by other strengthening mechanisms. This review also outlines the recent progress in the development of RAFM steels. Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength. Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel. The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries. This procedure increases the creep life of TMT(thermo-mechanical treatment) 9Cr-1W-0.06Ta steel by ∼20 times compared with those of F82H and Eurofer 97 steels under 550°C/260 MPa.

Keywords

reduced activation ferritic/martensitic steel / strengthening mechanism / high-angle grain boundary / subgrain boundary / precipitate

Cite this article

Download citation ▾
Jin-hua Zhou, Yong-feng Shen, Nan Jia. Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(3): 335-348 DOI:10.1007/s12613-020-2121-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Q, Baluc N, Dai Y, Jitsukawa S, Kimura A, Konys J, Kurtz RJ, Lindau R, Muroga T, Odette GR, Raj B, Stoller RE, Tan L, Tanigawa H, Tavassoli AAF, Yamamoto T, Wan F, Wu Y. Recent progress of R&D activities on reduced activation ferritic/martensitic steels. J. Nucl. Mater., 2013, 422(1–3): S2.

[2]

Sahoo KC, Vanaja J, Parameswaran P, Vijayanand VD, Laha K. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel. Mater. Sci. Eng. A, 2017, 686, 54.

[3]

Mao CL, Liu CX, Yu LM, Li HJ, Liu YC. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures. Mater. Sci. Eng. A, 2018, 725, 283.

[4]

Noda T, Abe F, Araki H, Okada M. Materials selection for reduced activation of fusion reactors. J. Nucl. Mater., 1988, 155–157, 581.

[5]

Bloom EE, Conn RW, Davis JW, Gold RE, Little R, Schultz KR, Smith DL, Wiffen FW. Low activation materials for fusion applications. J. Nucl. Mater., 1984, 122(1–3): 17.

[6]

Klueh RL, Cheng ET, Grossbeck ML, Bloom EE. Impurity effects on reduced-activation ferritic steels developed for fusion applications. J. Nucl. Mater., 2000, 280(3): 353.

[7]

Tanigawa H, Someya Y, Sakasegawa H, Hirose T, Ochiai K. Radiological assessment of the limits and potential of reduced activation ferritic/martensitic steels. Fusion Eng. Des., 2014, 89(7–8): 1573.

[8]

Klueh RL, Maziasz PJ. The microstructure of chromium-tungsten steels. Metall. Trans. A, 1989, 20(3): 373.

[9]

Klueh RL. Heat treatment behavior and tensile properties of Cr-W steels. Metall. Trans. A, 1989, 20(3): 463.

[10]

Klueh RL, Corwin WR. Impact behavior of Cr-W steels. J. Mater. Eng., 1989, 11(2): 169.

[11]

Noh S, Ando M, Tanigawa H, Fujii H, Kimura A. Friction stir welding of F82H steel for fusion applications. J. Nucl. Mater., 2016, 478, 1.

[12]

Kondo M, Ishii M, Hishinuma Y, Tanaka T, Nozawa T, Muroga T. Metallurgical study on corrosion of RAFM steel JLF-1 in Pb-Li alloys with various Li concentrations. Fusion Eng. Des., 2017, 125, 316.

[13]

Mukaia K, Sanchezb F. Chemical compatibility study between ceramic breeder and EUROFER97 steel for HCPB-DEMO blanket. J. Nucl. Mater., 2017, 488, 196.

[14]

Tang WS, Yang XQ, Li SL, Li HJ. Microstructure and properties of CLAM/316L steel friction stir welded joints. J. Mater. Process. Technol., 2019, 271, 189.

[15]

Shah NS, Sunil S, Sarkar A. High temperature uniaxial compression and stress-relaxation behavior of India-specific RAFM steel. Metall. Mater. Trans. A, 2018, 49, 2644.

[16]

Chun YB, Kang SH, Noh S, Kim TK, Lee DW, Cho S, Jeong YH. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel. J. Nucl. Mater., 2014, 455(1–3): 212.

[17]

Tan L, Katoh Y, Tavassoli AAF, Henry J, Rieth M, Sakasegawa H, Tanigawa H, Huang Q. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service. J. Nucl. Mater., 2016, 479, 515.

[18]

Zhao Y, Liu S, Shi J, Mao X. Experimental and numerical simulation analysis on creep crack growth behavior of CLAM steel. Mater. Sci. Eng. A, 2018, 735, 260.

[19]

Hu X, Huang LX, Yan W, Wang W, Sha W, Shan YY, Yang K. Microstructure evolution in CLAM steel under low cycle fatigue. Mater. Sci. Eng. A, 2014, 607, 356.

[20]

Verma P, Srinivas NCS, Singh SR, Singh V. Low cycle fatigue behavior of modified 9Cr-1Mo steel at room temperature. Mater. Sci. Eng. A, 2016, 652, 30.

[21]

Zhang C, Cui L, Liu YC, Liu CX, Li HJ. Microstructures and mechanical properties of friction stir welds on 9% Cr reduced activation ferritic/martensitic steel. J. Mater. Sci. Technol., 2018, 34(5): 756.

[22]

Zhang C, Cui L, Wang DP, Liu YC, Li HJ. Effect of microstructures to tensile and impact properties of stir zone on 9%Cr reduced activation ferritic/martensitic steel friction stir welds. Mater. Sci. Eng. A, 2018, 729, 257.

[23]

Kumar S, Awasthi R, Viswanadham CS, Bhanumurthy K, Dey GK. Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr-1Mo(V, Nb) ferritic/martensitic steel. Mater. Des., 2014, 59, 211.

[24]

Arivazhagan B, Srinivasan G, Albert SK, Bhaduri AK. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process. Fusion Eng. Des., 2011, 86(2–3): 192.

[25]

Luo FF, Yao Z, Guo LP, Suo JP, Wen YM. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties. Mater. Sci. Eng. A, 2014, 607, 390.

[26]

Wang CC, Zhang C, Zhao JJ, Yang ZG, Liu WB. Microstructure evolution and yield strength of CLAM steel in low irradiation condition. Mater. Sci. Eng. A, 2017, 682, 563.

[27]

Hu WH, Guo LP, Chen JH, Luo FF, Li TC, Ren YY, Suo JP, Yang F. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures. Fusion Eng. Des., 2014, 89(4): 324.

[28]

Brimbal D, Beck L, Troeber O, Gaganidze E, Trocellier P, Aktaa J, Lindau R. Microstructural characterization of Eurofer-97 and Eurofer-ODS steels before and after multi-beam ion irradiations at JANNUS Saclay facility. J. Nucl. Mater., 2015, 465, 236.

[29]

Dadé M, Malaplate J, Garnier J, Geuser FD, Barcelo F, Wident P, Deschamps A. Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels. Acta Mater., 2017, 127, 165.

[30]

Pal S, Alam ME, Maloy SA, Hoelzer DT, Odette GR. Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Mater., 2018, 152, 338.

[31]

Zhang Y, Yu C, Zhou T, Liu DW, Fang XW, Li HP, Suo JP. Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels. Mater. Des., 2015, 88, 675.

[32]

Wu D, Wang FM, Cheng J, Li CR. Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr-Mo-V steel for brake discs. Int. J. Miner. Metall. Mater., 2018, 25(8): 892.

[33]

Li Y, Du PF, Jiang ZH, Yao CL, Bai L, Wang Q, Xu G, Chen CY, Zhang L, Li HB. Effects of TiC on the microstructure and formation of acicular ferrite in ferritic stainless steel. Int. J. Miner. Metall. Mater., 2019, 26(11): 1385.

[34]

Chen JG, Liu CX, Liu YC, Yan BY, Li HJ. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel. J. Nucl. Mater., 2016, 479, 295.

[35]

Zhai XW, Liu SJ, Zhao YY. Effect of tantalum content on microstructure and tensile properties of CLAM steel. Fusion Eng. Des., 2016, 104, 21.

[36]

Zhou JH, Shen YF, Hong YY, Xue WY, Misra RDK. Strengthening a fine-grained low activation martensitic steel by nanosized carbides. Mater. Sci. Eng. A, 2020, 769, 138471.

[37]

Albert SK, Lahaa K, Bhaduria AK, Jayakumara T, Rajendrakumarb E. Development of IN-RAFM steel and fabrication technologies for Indian TBM. Fusion Eng. Des., 2016, 109–111, 1422.

[38]

Wang JB, Lian YY, Feng F, Chen Z, Tan Y, Yang S, Liu X, Qiang JB, Liu TZ, Wei MY, Wang YM. Microstructure of the tungsten and reduced activation ferritic-martensitic steel joint brazed with an Fe-based amorphous alloy. Fusion Eng. Des., 2019, 138, 164.

[39]

Pandey C, Giri A, Mahapatra MM. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties. Mater. Sci. Eng. A, 2016, 664, 58.

[40]

Chen SH, Rong LJ. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel. J. Nucl. Mater., 2015, 459, 13.

[41]

Agamennone R, Blum W, Gupta C, Chakravartty JK. Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr-2%W-5%Co steels. Acta Mater., 2006, 54(11): 3003.

[42]

Yan BY, Liu YC, Wang ZJ, Liu CX, Si YH, Li HJ, Yu JX. The effect of precipitate evolution on austenite grain growth in RAFM steel. Materials, 2017, 10(9): 1017.

[43]

Kim HK, Lee JW, Moon J, Lee CH, Hong HU. Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors. J. Nucl. Mater., 2018, 500, 327.

[44]

Tehrani-Moghadam HG, Jafarian HR, Salehi MT, Eivani AR. Evolution of microstructure and mechanical properties of Fe-24Ni-0.3C TRIP steel during friction stir processing. Mater. Sci. Eng. A, 2018, 718, 335.

[45]

Sklenicka V, Dvorak J, Kral P, Stonawska Z, Svoboda M. Creep processes in pure aluminium processed by equal-channel angular pressing. Mater. Sci. Eng. A, 2005, 410–411, 408.

[46]

M.E. Kassner, The Effect of Low-Angle, and High-Angle Grain Boundaries on Elevated Temperature Strength, MRS Proceedings, 362(1994).

[47]

Jiao Y, Huang LJ, Wei SL, Peng HX, An Q, Jiang S, Geng L. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance. J. Mater. Sci. Technol., 2019, 35(8): 1532.

[48]

Takahashi T, Nagai H, Oikawa H. Effects of grain size on creep behaviour of Ti-50 mol.%Al intermetallic compound at 1100 K. Mater. Sci. Eng. A, 1990, 128(2): 195.

[49]

Tian SG, Zhang BS, Yu HC, Tian N, Li QY. Microstructure evolution and creep behaviors of a directionally solidified nickel-base alloy under long-life service condition. Mater. Sci. Eng. A, 2016, 673, 391.

[50]

Hu YB, Zhang L, Cao TS, Cheng CQ, Zhao PT, Guo GP, Zhao J. The effect of thickness on the creep properties of a single-crystal nickel-based superalloy. Mater. Sci. Eng. A, 2018, 728, 124.

[51]

S.Y. Han, S.Y. Shin, C.H. Seo, H. Lee, J.H. Bae, K. Kim, S. Lee, and N.J. Kim, Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels, Metall. Mater. Trans. A, 40(2009), art. No. 1851.

[52]

Taylor AS, Hodgson PD. Dynamic behavior of 304 stainless steel during high Z deformation. Mater. Sci. Eng. A, 2011, 528(9): 3310.

[53]

Azevedo G, Barbosa R, Pereloma EV, Santos DB. Development of an ultrafine grained ferrite in a low C-Mn and Nb-Ti microalloyed steels after warm torsion and intercritical annealing. Mater. Sci. Eng. A, 2005, 402(1–2): 98.

[54]

Momeni A, Dehghani K. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater. Sci. Eng. A, 2011, 528(3): 1448.

[55]

Kassner ME. Recent developments in understanding the mechanism of five-power-law creep. Mater. Sci. Eng. A, 2005, 410–411, 20.

[56]

Tsukada Y, Shiraki A, Murata Y, Takaya S, Koyama T, Morinaga M. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel. J. Nucl. Mater., 2010, 401(1–3): 13.

[57]

Szajewski BA, Chakravarthy SS, Curtin WA. Operation of a 3D Frank-Read source in a stress gradient and implications for size-dependent plasticity. Acta Mater., 2013, 61(5): 1469.

[58]

Malygin GA. Mechanism of the formation of deformation steps of nanometric sizes at the surface of plastically deformed crystals. Phys. Solid State, 2001, 43, 257.

[59]

Tian SG, Yang JH, Yu XF. Deformation features of AZ31 Mg-alloy in initial period of high temperature creep. Acta Metall. Sin., 2005, 41(4): 375.

[60]

Li Y, Li YF, Xu B, Li QL, Shu GG, Liu W. Magnetic properties of thermally aged Fe-Cu alloys with pre-deformation. J. Iron. Steel Res. Int., 2016, 23(9): 981.

[61]

Kostka A, Tak KG, Eggeler G. On the effect of equal-channel angular pressing on creep of tempered martensite ferritic steels. Mater. Sci. Eng. A, 2008, 481–482, 723.

[62]

Liu W, Jiang YH, Guo H, Zhang Y, Zhao AM, Huang Y. Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature. Int. J. Miner. Metall. Mater., 2020, 27(6): 483.

[63]

Lu K. Making strong nanomaterials ductile with gradients. Science, 2014, 345(6230): 1455.

[64]

Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature, 2003, 424, 294.

[65]

Tan L, Snead LL, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors. J. Nucl. Mater., 2016, 478, 42.

[66]

Hou TP, Wu KM. Alloy carbide precipitation in tempered 2.25 Cr-Mo steel under high magnetic field. Acta Mater., 2013, 61(6): 2016.

[67]

Croteau JR, Griffiths S, Rossell MD, Leinenbach C, Kenel C, Jansena V, Seidmana DN, Dunanda DC, Voa NQ. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Mater., 2018, 153, 35.

[68]

Sun L, Simm TH, Martin TL, Mcadam S, Galvin DR, Perkins KM, Bagot PAJ, Moody MP, Ooi SW, Hill P, Rawson MJ, Bhadeshia HKDH. A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates. Acta Mater., 2018, 149, 285.

[69]

Tanaka H, Murata M, Abe F, Yagi K. The effect of carbide distributions on long-term creep rupture strength of SUS321H and SUS347H stainless steels. Mater. Sci. Eng. A, 1997, 234–236, 1049.

[70]

Baltušnikas A, Lukošiūtė I, Makarevičius V, Kriūkienė R, Grybėnas A. Influence of thermal exposure on structural changes of M23C6 carbide in P91 steel. J. Mater. Eng. Perform., 2016, 25, 1945.

[71]

Xue WY, Zhou JH, Shen YF, Zhang WN, Liu ZY. Micromechanical behavior of a fine-grained CLAM steel. J. Mater. Sci. Technol., 2019, 35(9): 1869.

[72]

Cho KS, Park SS, Choi DH, Kwon H. Influence of Ti addition on the microstructure and mechanical properties of a 5% Cr-Mo-V steel. J. Alloys Compd., 2015, 626, 314.

[73]

Tamura M, Shinozuka K, Masamura K, Ishizawa K, Sugimoto S. Solubility product and precipitation of TaC in Fe-8Cr-2W steel. J. Nucl. Mater., 1998, 258–263, 1158.

[74]

Lucas GE. The evolution of mechanical property change in irradiated austenitic stainless steels. J. Nucl. Mater., 1993, 206(2–3): 287.

[75]

Wang CS, Guo YA, Guo JT, Zhou LZ. Microstructural characteristics and mechanical properties of a Mo modified Ni-Fe-Cr based alloy. Mater. Sci. Eng. A, 2016, 675, 314.

[76]

Yang X, Liao B, Xiao FR, Yan W, Shan YY, Yang K. Ripening behavior of M23C6 carbides in P92 steel during aging at 800°C. J. Iron Steel Res. Int., 2016, 24(8): 858.

[77]

Peng ZF, Liu S, Yang C, Chen FY, Peng FF. The effect of phase parameter variation on hardness of P91 components after service exposures at 530–550°C. Acta Mater., 2018, 143, 141.

[78]

Zeng YP, Jia JD, Cai WH, Dong SQ, Wang ZC. Effect of long-term service on the precipitates in P92 steel. Int. J. Miner. Metall. Mater., 2018, 25(8): 913.

[79]

Zhao CC, Zhou YF, Xing XL, Liu S, Ren XJ, Yang QX. Precipitation stability and micro-property of (Nb, Ti)C carbides in MMC coating. J. Alloys Compd., 2018, 763, 670.

[80]

Yan W, Wang W, Shan YY, Yang K. Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels. Front. Mater. Sci., 2013, 7(1): 1.

[81]

Sawada K, Kubo K, Abe F. Contribution of coarsening of MX carbonitrides to creep strength degradation in high chromium ferritic steel. Mater. Sci. Technol., 2003, 19(6): 732.

[82]

Zhou XS, Liu CX, Yu LM, Liu YC, Li HJ. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review. J. Mater. Sci. Technol., 2015, 31(3): 235.

[83]

Liu C, Shi QQ, Yan W, Shen CG, Yang K, Shan YY, Zhao MC. Designing a high Si reduced activation ferritic/martensitic steel for nuclear power generation by using Calphad method. J. Mater. Sci. Technol., 2019, 35(3): 266.

[84]

Barr CM, Felfer PJ, Cole JI, Taheri ML. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography. J. Nucl. Mater., 2018, 504, 181.

[85]

Ishino S, Sekimura N, Murakami K, Abe H. Some remarks on in-situ studies using TEM-heavy-ion accelerator link from the stand point of extracting radiation damage caused by fast neutrons. J. Nucl. Mater., 2016, 471, 167.

[86]

Chen FD, Tang XB, Yang YH, Huang H, Liu J, Li H, Chen D. Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance. J. Nucl. Mater., 2016, 468, 164.

[87]

Liu PP, Zhao MZ, Zhu YM, Bai JW, Wan FR, Zhan Q. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel. J. Alloys Compd., 2013, 579, 599.

[88]

Wang X, Yan QZ, Was GS, Wang LM. Void swelling in ferritic-martensitic steels under high dose ion irradiation: Exploring possible contributions to swelling resistance. Scripta Mater., 2016, 112, 9.

[89]

G.A. Vetterick, J. Gruber, P.K. Suri, J.K. Baldwin, M.A. Kirk, P. Baldo, Y.Q. Wang, A. Misra, G.J. Tucker, and M.L. Taheri, Achieving radiation tolerance through non-equilibrium grain boundary structures, Sci. Rep., 7(2017), art. No. 12275.

[90]

Li SF, Zhou ZJ, Jang JS, Wang M, Hu HL, Sun HY, Zou L, Zhang GM, Zhang LW. The influence of Cr content on the mechanical properties of ODS ferritic steels. J. Nucl. Mater., 2014, 455(1–3): 194.

[91]

Pandey C, Mahapatra MM, Kumar P, Vidyrathy RS, Srivastava A. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel. Mater. Sci. Eng. A, 2017, 695, 291.

[92]

Yamashiro T, Ukai S, Oono N, Ohtsuka S, Kaito T. Microstructural stability of 11Cr ODS steel. J. Nucl. Mater., 2016, 472, 247.

[93]

Huet JJ. Possible fast-reactor canning material strengthened and stabilized by dispersion. Powder Metall., 1967, 10(20): 208.

[94]

Williams CA, Unifantowicz P, Baluc N, Smith GDW, Marquis EA. The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing. Acta Mater., 2013, 61(6): 2219.

[95]

Klueh RL, Maziasz PJ, Kim IS, Heatherly L, Hoelzer DT, Hashimoto N, Kenik EA, Miyahara K. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. J. Nucl. Mater., 2002, 307–311, 773.

[96]

Dou P, Kimura A, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F. Polymorphic and coherency transition of Y-Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel. Acta Mater., 2011, 59(3): 992.

[97]

Zhang GM, Zhou ZJ, Mo K, Wang PH, Miao YB, Li SF, Wang M, Liu X, Gong MQ, Almer J, Stubbins JF. The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy. J. Alloys Compd., 2015, 648, 223.

[98]

Dou P, Kimura A, Kasada R, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J. Nucl. Mater., 2014, 444(1–3): 441.

[99]

Yan PY, Yu LM, Liu YC, Liu CX, Li HJ, Wu JF. Effects of Hf addition on the thermal stability of 16Cr-ODS steels at elevated aging temperatures. J. Alloys Compd., 2018, 739, 368.

[100]

S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, and H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion, 57(2017), No. 9, art. No. 092055.

[101]

Xu S, Chen LZ, Cao SG, Jia HD, Zhou ZJ. Research progress on microstructure design and control of ODS steels application for advanced nuclear energy systems. Mater. Rep., 2019, 33(1): 78.

[102]

Legagneur HS, Vincent S, Garnier J, Gourgues-Lorenzon AF, Andrieu E. Anisotropic intergranular damage development and fracture in a 14Cr ferritic ODS steel under high-temperature tension and creep. Mater. Sci. Eng. A, 2018, 722, 231.

[103]

Dethloff C, Gaganidze E, Aktaa J. Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER97. J. Nucl. Mater., 2014, 454(1–3): 323.

[104]

Jaumier T, Vincent S, Vincent L, Desmorat R. Creep and damage anisotropies of 9%Cr and 14%Cr ODS steel cladding. J. Nucl. Mater., 2019, 518, 274.

[105]

Kumar D, Prakash U, Dabhade VV, Laha K, Sakthivel T. Development of oxide dispersion strengthened (ODS) ferritic steel through powder forging. J. Mater. Eng. Perform., 2017, 26, 1817.

[106]

Wang P, Yin TH, Qu SX. On the grain size dependent working hardening behaviors of severe plastic deformation processed metals. Scripta Mater., 2020, 178, 171.

[107]

Yang ZJ, Wang KK, Yang Y. Optimization of ECAP-RAP process for preparing semisolid billet of 6061 aluminum alloy. Int. J. Miner. Metall. Mater., 2020, 27, 792.

[108]

Wang LM, Wang ZB, Lu K. Grain size effects on the austenitization process in a nanostructured ferritic steel. Acta Mater., 2011, 59(9): 3710.

[109]

Chen SH, Jin XJ, Rong LJ. Improving the strength and ductility of reduced activation ferritic/martensitic steel by cold-swaging and post-annealing. Mater. Sci. Eng. A, 2015, 631, 139.

[110]

Jin XJ, Chen SH, Rong LJ. Microstructure modification and mechanical property improvement of reduced activation ferritic/martensitic steel by severe plastic deformation. Mater. Sci. Eng. A, 2018, 712, 97.

[111]

Hoffmann J, Rieth M, Commin L, Fernández P, Roldánb M. Improvement of reduced activation 9%Cr steels by ausforming. Nucl. Mater. Energy, 2016, 6, 12.

[112]

Xiao X, Liu GQ, Hu BF, Wang JS, Ullah A. Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. Mater. Charact., 2013, 82, 130.

[113]

Huo WT, Shi JT, Hou LG, Zhang JS. An improved thermo-mechanical treatment of high-strength Al-Zn-Mg-Cu alloy for effective grain refinement and ductility modification. J. Mater. Process. Technol., 2017, 239, 303.

[114]

Klueh RL, Hashimoto N, Maziasz PJ. New nanoparticle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment. J. Nucl. Mater., 2007, 367–370, 48.

[115]

Prakash P, Vanaja J, Srinivasan N, Parameswaran P, Nageswara Rao GVS, Laha K. Effect of thermo-mechanical treatment on tensile properties of reduced activation ferritic-martensitic steel. Mater. Sci. Eng. A, 2018, 724, 171.

[116]

Xiao X, Liu GQ, Hu BF, Wang JS, Ma WB. Microstructure stability of V and Ta microalloyed 12% Cr reduced activation ferrite/martensite steel during long-term aging at 650°C. J. Mater. Sci. Technol., 2015, 31(3): 311.

[117]

Huang LX. Study on Evolution of Microstructure and Mechanical Properties Atelevated Temperature for CLAM Steel, 2014, Qinghuangdao, Yanshan University

[118]

Zhong BY, Huang B, Li CJ, Liu SJ, Xu G, Zhao YY, Huang QY. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K. J. Nucl. Mater., 2014, 455(1–3): 640.

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/