Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling

Ping-ping Wang , Guo-qin Chen , Wen-jun Li , Hui Li , Bo-yu Ju , Murid Hussain , Wen-shu Yang , Gao-hui Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (11) : 1821 -1827.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (11) : 1821 -1827. DOI: 10.1007/s12613-020-2114-0
Article

Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling

Author information +
History +
PDF

Abstract

The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated. In the present work, the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored. Specifically, the thermal conductivity (λ) of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations. The interface between the (100) plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases. By contrast, the interface between the (111) plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling. The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles. The λ of the diamond/Al composites decreased abruptly over the initial 20 cycles, increased afterward, and then decreased monotonously once more with increasing number of thermal cycles. Decreases in the λ of the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch, rather than interfacial debonding, may be the main factors influencing the decrease in λ of the diamond/Al composites, especially in the initial stages of thermal cycling.

Keywords

metal-matrix composites / diamond / stability / thermal mismatch stress

Cite this article

Download citation ▾
Ping-ping Wang, Guo-qin Chen, Wen-jun Li, Hui Li, Bo-yu Ju, Murid Hussain, Wen-shu Yang, Gao-hui Wu. Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(11): 1821-1827 DOI:10.1007/s12613-020-2114-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Che ZF, Li JW, Wang QX, Wang LH, Zhang HL, Zhang Y, Wang XT, Wang JG, Kim MJ. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos. A: Appl. Sci. Manuf., 2018, 107, 164.

[2]

Long JP, Li X, Fang DD, Peng P, He Q. Fabrication of diamond particles reinforced Al-matrix composites by hot-press sintering. Int. J. Refract. Met. Hard Mater., 2013, 41, 85.

[3]

Monje IE, Louis E, Molina JM. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption. Scr. Mater., 2016, 115, 159.

[4]

Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, Kleiner S. Interface formation in infiltrated Al(Si)/diamond composites. Diam. Relat. Mater., 2006, 15(9): 1250.

[5]

Li CX, Wang XT, Wang LH, Li JW, Li HX, Zhang HL. Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere. Mater. Des., 2016, 92, 643.

[6]

Zhang Y, Li JW, Zhao LL, Wang XT. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J. Mater. Sci., 2015, 50(2): 688.

[7]

Chu K, Jia CC, Liang XB, Chen H. Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2010, 17(2): 234.

[8]

Shi J, Che RC, Liang CY, Cui Y, Xu SB, Zhang L. Microstructure of diamond/aluminum composites fabricated by pressureless metal infiltration. Compos. B: Eng., 2011, 42(6): 1346.

[9]

Monje IE, Louis E, Molina JM. Aluminum/diamond composites: A preparative method to characterize reactivity and selectivity at the interface. Scr. Mater., 2012, 66(10): 798.

[10]

Tan ZQ, Li ZQ, Fan GL, Guo Q, Kai XZ, Ji G, Zhang LT, Zhang D. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater. Des., 2013, 47, 160.

[11]

Ji G, Tan ZQ, Lu YG, Schryvers D, Li ZQ, Zhang D. Heterogeneous interfacial chemical nature and bonds in a Wcoated diamond/Al composite. Mater. Charact., 2016, 112, 129.

[12]

Tan ZQ, Ji G, Addad A, Li ZQ, Silvain JF, Zhang D. Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing. Compos. A: Appl. Sci. Manuf., 2016, 91, 9.

[13]

Wang PP, Xiu ZY, Jiang LT, Chen GQ, Lin X, Wu GH. Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control. Mater. Des., 2015, 88, 1347.

[14]

Li N, Wang LH, Dai JJ, Wang XT, Wang JG, Kim MJ, Zhang HL. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles. Diamond Relat. Mater., 2019, 100, 107565.

[15]

Ma SD, Zhao NQ, Shi CS, Liu EZ, He CN, He F, Ma LY. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci., 2017, 402, 372.

[16]

Yang WS, Chen GQ, Wang PP, Qiao J, Hu FJ, Liu SF, Zhang Q, Hussain M, Dong RH, Wu GH. Enhanced thermal conductivity in Diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. J. Alloys Compd., 2017, 726, 623.

[17]

Chen GQ, Yang WS, Xin L, Wang PP, Liu SF, Qiao J, Hu FJ, Zhang Q, Wu GH. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J. Alloys Compd., 2018, 735, 777.

[18]

Monje IE, Louis E, Molina JM. Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment. J. Mater. Sci., 2016, 51(17): 8027.

[19]

Yang WL, Peng K, Zhu JJ, Li DY, Zhou LP. Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer. Diamond Relat. Mater., 2014, 46, 35.

[20]

Xin L, Tian X, Yang WS, Chen GQ, Qiao J, Hu FJ, Zhang Q, Wu GH. Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method. J. Alloys Compd., 2018, 763, 305.

[21]

Battabyal M, Beffort O, Kleiner S, Vaucher S, Rohr L. Heat transport across the metal-diamond interface. Diamond Relat. Mater., 2008, 17(7-10): 1438.

[22]

Jiang LT, Wang PP, Xiu ZY, Chen GQ, Lin X, Dai C, Wu GH. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method. Mater. Charact., 2015, 106, 346.

[23]

Che ZF, Zhang Y, Li JW, Zhang HL, Wang XT, Sun C, Wang JG, Kim MJ. Nucleation and growth mechanisms of interfacial Al4C3 in Al/diamond composites. J. Alloys Compd., 2016, 657, 81.

[24]

Halicioglu T. Calculation of surface energies for low index planes of diamond. Surf. Sci., 1991, 259(1-2): L714.

[25]

Chang G, Sun FY, Duan JL, Che ZF, Wang XT, Wang JG, Kim MJ, Zhang HL. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater., 2018, 160, 235.

[26]

Tan ZQ, Li ZQ, Fan GL, Kai XZ, Ji G, Zhang LT, Zhang D. Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties. Diamond Relat. Mater., 2013, 31, 1.

[27]

Chang G, Sun FY, Wang LH, Che ZX, Wang XT, Wang JG, Kim MJ, Zhang HL. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications. ACS Appl. Mater. Interfaces, 2019, 11(29): 26507.

[28]

Schøbel M, Degischer HP, Vaucher S, Hofmann M, Cloetens P. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum. Acta Mater., 2010, 58(19): 6421.

[29]

Bai GZ, Zhang YJ, Liu XY, Dai JJ, Wang XT, Zhang HL. High-temperature thermal conductivity and thermal cycling behavior of Cu-B/diamond composites. IEEE Trans. Compon. Packag. Manuf. Technol., 2020, 10(4): 626.

[30]

Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater., 1987, 21(6): 508.

[31]

Kot P, Baczmanski A, Gadalinska E, Wronski S, Wronski M, Wróbel M, Bokuchava G, Scheffzük C, Wierzbanowski K. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models. J. Mater. Sci. Technol., 2020, 36, 176.

[32]

Liu JP, Xiong DB, Su YS, Guo Q, Li ZQ, Zhang D. Effect of thermal cycling on the mechanical properties of carbon nanotubes reinforced copper matrix nanolaminated composites. Mater. Sci. Eng. A, 2019, 739, 132.

[33]

Zare R, Sharifi H, Saeri MR, Tayebi M. Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite. J. Alloys Compd., 2019, 801, 520.

[34]

Ju BY, Yang WS, Shao PZ, Hussain M, Zhang Q, Xiu ZY, Hou XW, Qiao J, Wu GH. Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites. Carbon, 2020, 162, 346.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/