Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt

Tai-qi Yin , Lang Chen , Yun Xue , Yang-hai Zheng , Xue-peng Wang , Yong-de Yan , Mi-lin Zhang , Gui-ling Wang , Fan Gao , Min Qiu

International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1657 -1665.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2020, Vol. 27 ›› Issue (12) : 1657 -1665. DOI: 10.1007/s12613-020-2112-2
Article

Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt

Author information +
History +
PDF

Abstract

Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes, including Al, Ni, Cu, and liquid Zn, and the electrochemical behaviors of the resultant metal products were investigated using different electrochemical techniques. While Sm metal deposition via the conventional two-step reaction process was not noted on the inert electrode, underpotential deposition was observed on the reactive electrodes because of the latter’s depolarization effect. The depolarization effects of the reactive electrodes on Sm showed the order Zn > Al > Ni > Cu. Sm-M (M = Al, Ni, Cu, Zn) alloys were deposited by galvanostatic and potentiostatic electrolysis. The products were fully characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM)-energy dispersive spectrometry (EDS), and the stability of the obtained M-rich compounds was determined. Finally, the relationship between the electrode potential and type of Sm-M intermetallic compounds formed was assessed on the basis of the observed electrochemical properties and electrodeposits.

Keywords

electrodeposits / depolarization effect / reactive electrodes / samarium alloys

Cite this article

Download citation ▾
Tai-qi Yin, Lang Chen, Yun Xue, Yang-hai Zheng, Xue-peng Wang, Yong-de Yan, Mi-lin Zhang, Gui-ling Wang, Fan Gao, Min Qiu. Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt. International Journal of Minerals, Metallurgy, and Materials, 2020, 27(12): 1657-1665 DOI:10.1007/s12613-020-2112-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bagri P, Simpson MF. Activity measurements of gadolinium(III) chloride in molten LiCl-KCl eutectic salt using saturated Gd/GdCl3 reference electrode. J. Electrochem. Soc., 2017, 164(8): H5299.

[2]

Ackerman JP. Chemical basis for pyrochemical reprocessing of nuclear fuel. Ind. Eng. Chem. Res., 1991, 30(1): 141.

[3]

J. Zhang, Impurities in primary coolant salt of FHRs: Chemistry, impact, and removal methods, Energy Technol., 7(2019), No. 10, art. No. 1900016.

[4]

Liu YL, Yuan LY, Zheng LR, Wang L, Yao BL, Chai ZF, Shi WQ. Confirmation and elimination of cyclic electrolysis of uranium ions in molten salts. Electrochem. Commun., 2019, 103, 55.

[5]

Castrillejo Y, De La Fuente C, Vega M, de la Rosa F, Pardo R, Barrado E. Cathodic behaviour and oxoacidity reactions of samarium(III) in two molten chlorides with different acidity properties: The eutectic LiCl-KCl and the equimolar CaCl2-NaCl melt. Electrochim. Acta, 2013, 97, 120.

[6]

Cordoba G, Caravaca C. An electrochemical study of samarium ions in the molten eutectic LiCl + KCl. J. Electroanal. Chem., 2004, 572(1): 145.

[7]

Gibilaro M, Massot L, Chamelot P, Taxil P. Co-reduction of aluminium and lanthanide ions in molten fluorides: Application to cerium and samarium extraction from nuclear wastes. Electrochim. Acta, 2009, 54(22): 5300.

[8]

Massot L, Chamelot P, Taxil P. Cathodic behaviour of samarium(III) in LiF-CaF2 media on molybdenum and nickel electrodes. Electrochim. Acta, 2005, 50(28): 5510.

[9]

Shirai O, Uozumi K, Iwai T, Arai Y. Electrode reaction of the Np3+/Np couple at liquid Cd and Bi electrodes in LiCl-KCl eutectic melts. J. Appl. Electrochem., 2004, 34(3): 323.

[10]

Ustundag M, Varol R. Comparison of a commercial powder and a powder produced from Ti-6Al-4V chips and their effects on compacts sintered by the sinter-HIP method. Int. J. Miner. Metal. Mater., 2019, 26(7): 878.

[11]

Lin GY, Tan X, Feng D, Wang JL, Lei YX. Effects of conform continuous extrusion and heat treatment on the micro-structure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy. Int. J. Miner. Metal. Mater., 2019, 26(8): 1013.

[12]

Wu D, Wang WL, Zhang LG, Wang ZY, Zhou KC, Liu LB. New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties. Int. J. Miner. Metal. Mater., 2019, 26(9): 1151.

[13]

Cao Y, Zhang DD, Zhou PJ, Liu K, Ming WY, Ma J. Reinforcing effect of laminate structure on the fracture toughness of Al3Ti intermetallic. Int. J. Miner. Metal. Mater., 2020, 27(5): 678.

[14]

Sun HB, Wang W, Yu ZJ, Yuan Y, Wang S, Jiao SQ. A new aluminium-ion battery with high voltage, high safety and low cost, 2015, 51(59): 11892.

[15]

Zhang XF, Jiao SQ, Tu JG, Song WL, Xiao X, Li SJ, Wang MY, Lei HP, Tian DH, Chen HS, Fang DN. Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci., 2019, 12(6): 1918.

[16]

Song Y, Jiao SQ, Tu JG, Wang JX, Liu YJ, Jiao HD, Mao XH, Guo ZC, Fray DJ. A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A, 2017, 5(3): 1282.

[17]

Jiao HD, Wang C, Tu JG, Tian DH, Jiao SQ. A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite. Chem. Commun., 2017, 53(15): 2331.

[18]

Gao Y, Shi YK, Liu XL, Huang C, Li B. Cathodic behavior of samarium(III) and Sm-Al alloys preparation in fluorides melts. Electrochim. Acta, 2016, 190, 208.

[19]

Zhang ML, Yan YD, Han W, Li X, Hou ZY, Tian Y, Ye K, Bao LH, Li XD, Zhang ZJ. A new approach for the preparation of variable valence rare earth alloys from nano rare earth oxides at a low temperature in molten salt. RSC Adv., 2012, 2(4): 1585.

[20]

Liu K, Liu YL, Yuan LY, He H, Yang ZY, Zhao XL, Chai ZF, Shi WQ. Electroextraction of samarium from Sm2O3 in chloride melts. Electrochim. Acta, 2014, 129, 401.

[21]

Castrillejo Y, Fernández P, Medina J, Hernández P, Barrado E. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes. Electrochim. Acta, 2011, 56(24): 8638.

[22]

Chamelot P, Massot L, Hamel C, Nourry C, Taxil P. Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent. J. Nucl. Mater., 2007, 360(1): 64.

[23]

Liu YH, Zhang S, Zhong WH, Cui GK, Wang YC, Dai Y, Cao XH, Wang YQ, Zhang ZB, Liu YH. Electrochemical extraction of Sm(III) on active Ni electrode fabricated Sm-Ni alloys. J. Radioanal. Nucl. Chem., 2019, 322(2): 1003.

[24]

Taxil P, Massot L, Nourry C, Gibilaro M, Chamelot P, Cassayre L. Lanthanides extraction processes in molten fluoride media: Application to nuclear spent fuel reprocessing. J. Fluorine Chem., 2009, 130(1): 94.

[25]

Liu YL, Yuan LY, Liu K, Ye GA, Zhang ML, He H, Tang HB, Lin RS, Chai ZF, Shi WQ. Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys. Electrochim. Acta, 2014, 120, 369.

[26]

Ji DB, Yan YD, Zhang ML, Li X, Jing XY, Han W, Xue Y, Zhang ZJ, Hartmann T. Electrochemical preparation of Al-Sm intermetallic compound whisker in LiCl-KCl Eutectic Melts. Electrochim. Acta, 2015, 165, 211.

[27]

Iida T, Nohira T, Ito Y. Electrochemical formation of Sm-Ni alloy films in a molten LiCl-KCl-SmCl3 system. Electrochim. Acta, 2001, 46(16): 2537.

[28]

Liu YH, Yan YD, Zhang ML, Zheng JN, Wang P, Yin TQ, Xue Y, Jing XY, Han W. Electrochemical synthesis of Sm-Ni alloy magnetic materials by Co-reduction of Sm(III) and Ni(II) in LiCl-KCl-SmCl3-NiCl2 melt. J. Electrochem. Soc., 2016, 163(13): D672.

[29]

Liu YH, Yan YD, Zhang ML, Ji DB, Li P, Yin TQ, Wang P, Xue Y, Jing XY, Han W, Qiu M, H DH. Electrochemical synthesis of Sm-Cu dendritic metal catalysts by Co-reduction of Sm(III) and Cu(II) in LiCl-KCl-SmCl3-CuCl2 melt. J. Alloys Compd., 2019, 772, 978.

[30]

Zhao HJ, Xie HW, Zhou XB, Qu JK, Zhao ZQ, Song QS, Ning ZQ, Xing PF, Yin HY. Engineering the electrochemical reduction of carbon and silica in molten CaCl2: Manipulation of the electrolytic products. J. Electrochem. Soc., 2019, 166(4): E137.

[31]

Du SL, Zhou MS, Tang DX. Depolarization of rare-earth metals on a liquid aluminum cathode in molten chlorides. Chin. J. Appl. Chem., 1987, 4(2): 65.

[32]

Liu K, Liu YL, Chai ZF, Shi WQ. Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J. Electrochem. Soc., 2017, 164(4): D169.

[33]

Liu YL, Ye GA, Liu K, Yuan LY, Chai ZF, Shi W. Electrochemical behavior of La (III) on the zinc-coated W electrode in LiCl-KCl eutectic. Electrochim. Acta, 2015, 168, 206.

[34]

Pletcher D, Greff R, Peat R, Peter L, Robinson J. Instrumental Methods in Electrochemistry, 2001, Pennsylvania, Woodhead Publishing Limited

[35]

Barin I, Platzki G. Thermochemical Data of Pure Substances, 1995, 3rd ed, Weinheim, VCH Verlagsgesellschaft mbH

[36]

Kulikova TV, Maiorova AV, Bykov VA, Shunyaev KY. Thermodynamic properties of melts based on the Al-Sm system. Russ. J. Phys. Chem. A, 2012, 86(8): 1185.

[37]

Su XP, Zhang WJ, Du ZM. A thermodynamic assessment of the Ni-Sm system. J. Alloys Compd., 1998, 278(1–2): 182.

[38]

Zhuang W, Qiao ZY, Wei S, Shen J. Thermodynamic Evaluation of the Cu-R (R: Ce, Pr, Nd, Sm) Binary Systems. J. Phase Equilib., 1996, 17(6): 508.

[39]

Konishi H, Nohira T, Ito Y. Formation and phase control of Dy alloy films by electrochemical implantation and displantation. J. Electrochem. Soc., 2001, 148(7): C506.

[40]

Jia BR, Zhang LG, Huang GX, Qi HY, Yang H, Liu LB, Jin ZP, Zheng F. Thermodynamic assessment of the Sm-Zn binary system. J. Alloys Compd., 2009, 473(1–2): 176.

[41]

Chiotti P, Mason JT. Phase relations and thermodynamic properties for the samarium-zinc system. Trans. Met. Soc. AIME, 1967, 239(4): 547.

[42]

S.L. Li, Y.S. Che, J.X. Song, C.Y. Li, Y.C. Shu, J.L. He, and B. Yang, Electrochemical studies on the redox behavior of Zr(IV) in the LiCl-KCl eutectic molten salt and separation of Zr and Hf, J. Electrochem. Soc., 167(2020), No. 2, art. No. 023502.

[43]

Castrillejo Y, Hernández P, Fernández R, Barrado E. Electrochemical behaviour of terbium in the eutectic LiCl-KCl in Cd liquid electrodes.- Evaluation of the thermochemical properties of the TbCdx intermetallic compounds. Electrochim. Acta, 2014, 147, 743.

[44]

Yin TQ, Xue Y, Yan YD, Zheng YH, Song YL, Wang GL, Zhang ML, Qiu M, Hu DH. Electrochemical synthesis and thermodynamic properties of Pr-Ni intermetallic compounds in a LiCl-KCl-NiCl2-PrCl3 Melt. ChemElectro-Chem, 2019, 6(3): 876.

[45]

Castrillejo Y, Bermejo M, Arocas PD, Martinez A, Barrado E. Electrochemical behaviour of praseodymium(III) in molten chlorides. J. Electroanal. Chem., 2005, 575(1): 61.

[46]

Jin LL, Kang YB, Chartrand P, Fuerst CD. Thermodynamic evaluation and optimization of Al-La, Al-Ce, Al-Pr, Al-Nd and Al-Sm systems using the modified quasichemical model for liquids. Calphad, 2011, 35(1): 30.

[47]

Yin TQ, Liang Y, Qu JM, Li P, An RF, Xue Y, Zhang ML, Han W, Wang GL, Yan YD. Thermodynamic and electrochemical properties of praseodymium and the formation of Ni-Pr intermetallics in LiCl-KCl melts. J. Electrochem. Soc., 2017, 164(13): D835.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/